Cho A=1+2+22+......+2100
Viết A+1 dưới dạng một lũy thừa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1+2+2^2+...+2^{2015}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)
\(A=2^{2016}-1\)
A không thể biết dưới dạng lũy thừa của 8 được
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
Câu 3:
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Mà: \(2A+3=3^N\)
\(\Rightarrow3^{101}-3+3=3^N\)
\(\Rightarrow3^{101}=3^N\)
\(\Rightarrow N=101\)
Vậy: ...
Câu 1:
\(A=4+2^2+...+2^{20}\)
Đặt \(B=2^2+2^3+...+2^{20}\)
=>\(2B=2^3+2^4+...+2^{21}\)
=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)
=>\(B=2^{21}-4\)
=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2
Câu 6:
Đặt A=1+2+3+...+n
Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)
=>\(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(A⋮n+1\)
Câu 5:
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
\(A=1+2+2^2+2^3+...+2^{30}\)
\(2A=2+2^2+2^3+2^4+...+2^{31}\)
\(2A-A=2^{31}-1\)
\(A=2^{31}-1\)
\(A+1=3^{31}\)
A = 231 - 1
=> A + 1 = 231
Vào link này xem rõ hơn nè :Câu hỏi của TRần Anh Nam - Toán lớp 6 - Học toán với OnlineMath
Chúc bạn học tốt
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
\(A=1+2+2^2+...+2^{30}\)
\(2A=2+2^2+...+2^{30}+2^{31}\)
\(\Rightarrow A=2^{31-1}\)
Vậy : \(A+1=2^{31}\)
Ta có: A=1+2+22+23+24+…+2200
=>2A=2+22+23+24+25+…+2201
=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200
=>A=2201-1
=>A+1=2201
A=1+2+2^2+..+2^100
=>2A=2+2^+26+..+2^101
=>2A-A=(2+2^+26+..+2^101)-(1+2+2^2+..+2^100)
vậy A=2^101-1