choA =1+2+\(2^2\)+\(2^3\)+.......\(2^{11}\)không tính tổng chứng minh A chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=1+2+2^2+2^3+............+2^{11}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)
\(=3\cdot\left(1+2^2+...+2^{10}\right)⋮3\)
=>đpcm

A = 2 + 22 + 23 + ...+ 230
A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 229 + 230 )
A = 2(1+2) + 23(1+2) + ....+ 229(1+2)
A = 2.3 + 23 . 3 + ...+ 229.3
A = 3(2+23 + ...+ 229) \(⋮\) 3
Vậy A chia hết cho 3


A=(1+2)+(22+23)+...+(210+211)
A=3+22.(1+2)+...+210.(1+2)
A=3+22.3+...+210.3
A=3+(22+...+210)
=>A:cho 3
tick mk nha

A = 1 + 2 + 22 + ... + 211
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right).\)
\(=3+2^2\left(1+2\right)+2^4\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=3\left(1+2^2+2^4+...+2^{10}\right)⋮3\)
A=(1+2)+(2^2+2^3)+...+(2^10+2^11)
= 3+2^2(1+2)+...+2^10(1+2)
=3+2^2.3+...+2^10.3
= 3(1+2^2+...+2^10) chia hết cho 3
=> tổng A chia hết cho 3

\(A=1+2+2^2+2^3+...+2^{11}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(A=3+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(A=3+2^2.3+...+2^{10}.3\)
\(A=3\left(1+2^2+...+2^{10}\right)\)
\(\Rightarrow A⋮3\)
Vậy \(A⋮3\)
!!!
Nguyễn Huy Hải tính mt hửa?