K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có

M là trung điểm của AB

I là trung điểm của AC

Do đó: MI là đường trung bình của ΔBAC

Suy ra: MI//BC và \(MI=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có 

K là trung điểm của BD

N là trung điểm của CD

Do đó: KN là đường trung bình của ΔBDC

Suy ra: KN//BC và \(KN=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MI=KN và MI//KN

Xét tứ giác MINK có 

MI//KN

MI=KN

Do đó: MINK là hình bình hành

29 tháng 11 2017

Bạn tra gu gồ được mà,hỏi làm gì cho mệt chớ,tìm được cách làm trên gu gồ là áp dụng vào bài thôi

29 tháng 11 2017

 noi A vs C ,BvsC

ap dung tinh chat duong trug binh cua tam giac

AM=EN

MN=FE

MNEF la hinh thoi

25 tháng 5 2016

ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)

kết hợp với giả thiết ta có diện tích ADF bằng BCF

hay d(A,DF).DF.1/2=d(B,CF).CF.1/2

hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC 

vậy => đpcm

15 tháng 6 2016

A D B C M N I

xét trường hợp tứ giác lồi ABCD không phải là hình thang

nối BD , gọi I là trung điểm của BD 

xét tam giác ABD  ta được 

M là trung điểm AB (GT)

 I là trung điểm của BD ( như cách gọi)

=> MI là  đường trung bình của tam giác ABD

     => MI // AD ; MI = 1/2 AD (1)

xét tam giác DBC ta có

 I là trung điểm của BD ( như cách gọi)

N là trung điểm của CD ( GT) 

=> NI là đường trung bình của tam giác DBC

    => NI //BC ; NI = 1/2BC (2)

cộng theo vế của (1) và (2) ta được

NI + MI = 1/2 (AD + BC)  hay \(MI+NI=\frac{BC+AD}{2}\)(3)

vì ABCD không phải là hình thang nên I không thuộc MN hay 3 điểm I,M,N không thẳng hàng. Ta được tam giác MIN. 

áp dụng định lí bất đẳng thức tm giác vào tm giác MIN ta có

MN < MI + NI (4)

kết hợp (3) và (4) ta được

\(MN<\frac{BC+AD}{2}\)(5)

* Xét trường hợp ABCD là hình thang ( AD // BC) 

ta có

M là trung điểm AB,

N là trung điểm CD

=> MN là đường trung bình của hình thang ABCD

    => \(MN=\frac{BC+AD}{2}\) (6)

kết hợp (5) và (6) ta được

\(MN\le\frac{BC+AD}{2}\)

15 tháng 6 2016

an cut

24 tháng 5 2016

ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)

kết hợp với giả thiết ta có diện tích ADF bằng BCF

hay d(A,DF).DF.1/2=d(B,CF).CF.1/2

hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC 

vậy => đpcm

23 tháng 5 2016

các câu hỏi trên online math bạn tự tìm hiểu 

 

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy