Bài 1: Tìm x thuộc N để (n^2-8)^2 +36 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(n2−8)2+36
=n4−16n2+64+36
=n4+20n2+100−36n2
=(n2+10)2−(6n)2
=(n2+10+6n)(n2+10−6n)
Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1
Mặt khác ta có n2+10−6n<n2+10+6n n2+10−6n=1 (n thuộc N)
n2+9−6n=0 hay (n−3)2=0 n=3
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________
Sửa lại một số chỗ :
Ta có:
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.
Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+100\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là số nguyên tố thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
\(\left(n^2-8\right)^2+36\)
\(=\left(n^4-16n^2+64\right)+36\)
\(=n^4+20n^2-36n^2+100\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Mà để \(\left(n^2+10-6n\right)\left(n^2+10+6n\right)\) là số nguyên tố thì \(n^2+10-6n=1\) hoặc \(n^2+10+6n=1\)
Mặt khác ta có \(n^2+10-6n< n^2+10+6n\)
\(\Rightarrow n^2+10-6n=1\left(n\in N\right)\)
\(\Rightarrow n^2+9-6n=0\)
\(\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)
Vậy với \(n=3\) thì \(\left(n^2-8\right)^2+36\) là số nguyên tố.