Tìm a, b để đa thức \(2x^4-3x^3+ax^2-x+b\) chia hết cho \(x^2+3x-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
a: \(\Leftrightarrow3x^3-x^2+3x^2-x-6x+2+a-2⋮3x-1\)
=>a-2=0
hay a=2
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
hay a=7
Do đa thức bị chia \(2x^4-3x^3\: +ax^2-x+b\) có bậc 4
đa thức chia \(x^2+3x-4\) có bậc 2
nên đa thức thương là tam thức bậc 2
\(\Rightarrow\) Nhân tử đầu \(2x^4:x^2=2x^2\)
Gọi đa thức thương là \(2x^2+cx+d\)
\(\Rightarrow\) Để \(2x^4-3x^3\: +ax^2-x+b⋮x^2+3x-4\)
\(\text{thì }\Rightarrow2x^4-3x^3\: +ax^2-x+b=\left(x^2+3x-4\right)\left(2x^2+cx+d\right)\\ \\ =2x^4+cx^3+dx^2+6x^3+3cx^2+3dx-8x^2-4cx-4d\\ \\=2x^4+\left(c+6\right)x^3+\left(d+3c-8\right)x^2+\left(3d-4c\right)x-4d\)
\(\Rightarrow\left\{{}\begin{matrix}c+6=-3\Rightarrow c=-9\\d+3c-8=a\\3d-4c=-1\\-4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d-35=a\\3d=-37\\-4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{142}{3}\\d=-\dfrac{37}{3}\\b=\dfrac{148}{3}\end{matrix}\right.\)
Vậy để \(2x^4-3x^3\: +ax^2-x+b⋮x^2+3x-4\)
thì \(a=-\dfrac{142}{3};b=\dfrac{148}{3}\)