Tìm x biết:
|3x - 2| - x > 1
|2x + 3| \(\le\) 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
Bài giải
\(a,\text{ }\left|3x-2\right|-x>1\)
\(\left|3x-2\right|>x+1\)
TH1 : 3x - 2 < 0 => 3x < 3 => x < 1 thì :
\(3x-2>-x-1\)
\(3x+x>2-1\)
\(4x>1\)
\(x>\frac{1}{4}\)
=> \(\frac{1}{4}< x< 1\)
TH2 : 3x - 2 \(\ge\)0 => 3x \(\ge\)2 => x \(\ge\) \(\frac{2}{3}\) thì :
\(3x-2>x+1\)
\(3x-x>1+2\)
\(2x>3\)
\(x>\frac{3}{2}\)
Vậy \(\frac{1}{4}< x< 1\) hoặc \(x>\frac{3}{2}\)
a) 2x + 2 > 4
\(\Leftrightarrow\) 2x > 2
\(\Leftrightarrow\) x > 2
Vậy no của bpt là x > 2.
b) 3x + 2 > -5
\(\Leftrightarrow\) 3x > -7
\(\Leftrightarrow\) x < -\(\frac{7}{3}\)
Vậy no của bpt là x < -\(\frac{7}{3}\)
c) 10 - 2x > 2 \(\Leftrightarrow\) -2x > 8 \(\Leftrightarrow\) x < -4. Vậy no của bpt là x < -4 d) 1 - 2x < 3 \(\Leftrightarrow\) -2x < -2 \(\Leftrightarrow\) x > 1 Vậy no của bpt là x > 1 e) 3 - \(\frac{2x}{5}\) > 2 - \(\frac{x}{3}\) \(\Leftrightarrow\) \(\frac{3.15}{15}\)- \(\frac{2x.3}{15}\) > \(\frac{2.15}{15}\) - \(\frac{5.x}{15}\)\(\Leftrightarrow\) 45 - 6x > 30 - 5x
\(\Leftrightarrow\) -6x + 5x > 30 - 45
\(\Leftrightarrow\) -x > -15
\(\Leftrightarrow\) x < 15
Vậy no của bpt là x < 15
a) \(\left|4x+3\right|-x=15\)\\
\(\Rightarrow\left|4x+3\right|=15+x.\)
\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{18}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{4;-\dfrac{18}{5}\right\}.\)
b) \(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>1+x.\)
\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\Rightarrow\dfrac{1}{4}< x< \dfrac{3}{2}.\)
Vậy \(\dfrac{1}{4}< x< \dfrac{3}{2}\)
c) \(\left|2x+3\right|\le5\)
\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)
Vậy \(-4\le x\le1\)
a) \(\left|4x+3\right|-x=15\)
\(\Rightarrow\left|4x+3\right|=15+x.\)
\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{18}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{4;-\dfrac{18}{5}\right\}.\)
b) \(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>1+x.\)
\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\Rightarrow\dfrac{1}{4}< x< \dfrac{3}{2}.\)
Vậy \(\dfrac{1}{4}< x< \dfrac{3}{2}\)
c) \(\left|2x+3\right|\le5\)
\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)
Vậy \(-4\le x\le1\)
b: |2x+3|<=5
=>2x+3>=-5 và 2x+3<=5
=>-4<=x<=1