K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

cứu

13 tháng 10 2016

1)chứng minh cái j ???

2)\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b)Ta có: 

\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)

\(\Leftrightarrow a^2b^2+c^2d^2+2abcd\le a^2b^2+a^2d^2+b^2c^2+c^2d^2\)

\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(Đpcm)

c)Áp dụng Bđt Bunhiacopxki ta có:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)

\(\Rightarrow2\left(x^2+y^2\right)\ge4\)

\(\Rightarrow x^2+y^2\ge2\)\(\Rightarrow S\ge2\)

Dấu = khi \(x=y=1\)

b,giả sử (a2;a+b) khác 1

gọi d là ƯCNT của a2;a+b

=>a2 chia hết cho d=>a chia hết cho d

a+b chia hết cho d=>b chia hết cho d

=>(a;b)>1  trái GT

=>(a2;a+b)=1

=>đpcm

c,

,giả sử (ab;a+b) khác 1

gọi d là ƯCNT của ab;a+b

ab chia hết cho d=>a hoặc b chia hết cho d

1 trong 2 số a;b chia hết cho d

mà a+b chia hết cho d

=>số còn lại chia hết cho d

=>(a;b)>1 trái GT

=>(ab;a+b)=1

=>đpcm

8 tháng 1 2016

Thành ơi, ai nói: a2 chia hết cho d=> a chia hết cho d. Nếu thế thì làm ra từ lâu rồi. VD: 42=16 chia hết cho 8 mà 4 không chia hết cho 8

8 tháng 1 2016

a)Gọi ƯCLN(a,a+b)=d

=>a chia hết cho d

    a+b chia hết cho d

=>a+b-a chia hết cho d

=>b chia hết cho d

=>d=ƯC(a,b)

Vì a và b nguyên tố cùng nhau

=>d=ƯC(a,b)=1

=>ƯCLN(a,a+b)=1

=>a và a+b là nguyên tố cùng nhau

=>ĐPCM

 

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)