K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

gọi UCLN (n+1;n+2) là d

\(\Rightarrow n+1⋮d\)

\(\Rightarrow n+2⋮d\)

\(\Leftrightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Rightarrowđpcm\)

Gọi d là ƯCLN của n+1 và n+2

=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}n+1⋮d\\n+1+1⋮d\end{cases}}\)=>\(1⋮d\)

=> ƯCLN (n+1,n+2) = 1

=> n+1 và n+2 là 2 số nguyên tố cùng nhau

28 tháng 10 2021

\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: n+5 và n+4 là hai số nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

25 tháng 7 2021

Gọi (n + 6 ; n + 7) = d

=> \(\hept{\begin{cases}n+6⋮d\\n+7⋮d\end{cases}}\Leftrightarrow\left(n+7\right)-\left(n+6\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

=> (n + 6 ; n + 7) = 1

Vậy n + 6 ; n + 7 là 2 số nguyên tô cùng nhau \(\forall n\inℕ\)

17 tháng 10 2021

\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)

\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn

\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)

\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy 3n+10 và 3n+9 ntcn

11 tháng 3 2017

Gọi d là UCLN(2n+1;14n+5)

->(14n+5)-(2n+1)chia hết cho d

->(14n+5)-7(2n+1) chia hết cho d

->14n+5-14n-1 chia hết cho d

->n+5-n-1

4 chia hết cho d

d thuộc {1;-1;2;-2;4;-4}

Sau đó thì bạn dùng phương pháp thử chọn nha.

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1