Tìm STN n để :
a) n+4\(⋮\)n
b)5n-6\(⋮\)n (n>1)
c) 143-12n\(⋮\)n (n<12)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thử nha! Bài dễ hơn làm trước, bài 1 nghĩ sau:v
Bài 2:
ĐK: n > 0 (do mẫu số khác 0 và n thuộc N)
a) Ta có \(\frac{n+4}{n}=1+\frac{4}{n}\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Suy ra S ={1;2;4)
vậy ...
b)\(\frac{5n-6}{n}=5-\frac{6}{n}\Rightarrow n\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Kết hợp đkSuy ra S \(=\varnothing\) (vì n <1 nên ko có số n thỏa mãn đk)
Vậy...
c) \(\frac{143-12n}{n}=\frac{143}{n}-12\)
Suy ra \(n\inƯ\left(143\right)=\left\{1;11;...\right\}\)
Vì n < 12 nên S = {1;11}
Bài 1: Thử nha, lâu rồi không làm quên mất phương pháp rồi....
\(\overline{1ab}=\overline{ab1}-36\)
\(\Leftrightarrow100+10a+b=100a+10b+1-36\)
\(\Leftrightarrow135+10a+b=100a+10b\)
\(\Leftrightarrow9\left(10a+b\right)=135\)
\(\Leftrightarrow10a+b=15\Leftrightarrow\overline{ab}=15\Rightarrow a=1;b=5\)
a: \(\Leftrightarrow n\inƯ\left(4\right)\)
hay \(n\in\left\{1;2;4\right\}\)
b: \(\Leftrightarrow n\in\left\{1;2;3;6\right\}\)
mà n<1
nên \(n\in\varnothing\)
c: \(\Leftrightarrow n\inƯ\left(143\right)\)
mà n<12
nên \(n\in\left\{1;11\right\}\)
1.b) n+9 chia hết cho n+4
==> n+4+5 chia hết cho n+4
Vì n+4 chia hết chi n+4
==> 5 chia hết cho n+4
==> n+5 € Ư(5)
n+5 €{1;—1;5;—5}
TH1: n+5=1
n=1–5
n=-4
TH2: n+5=-1
n=—1–5
n=-6
TH3: n+5=5
n=5-5
n=0
TH4: n+5=—5
n=—5 —5
n=—10
Mà n€N
Nên n=0
nếu bạn chưa học số âm thì không cần viết vào đâu, cũng ko cần viết TH2 với TH4, và bạn ghi vào TH1 là phép tính ko thực hiện đc là xong
a) n + 4 chia hết cho n <=> 4 chia hết cho n <=> n \(\in\) Ư(4) = {1; 2; 4}
b) n < 1 mà n là số tự nhiên nên n = 0. Nhưng n khác 0 thì n là số chia => n \(\in\varnothing\)
c) 143 - 12n chia hết cho n <=> 143 chia hết cho n
<=> n \(\in\) Ư(143) = {1; 11; 13; 143}. Vì n < 12 nên n \(\in\) {1; 11}
a) Để n + 4 \(⋮\) n
<=> n \(⋮\) n ( điều này luôn luôn đúng với mọi n )
4 \(⋮\) n
=> n \(\in\) Ư(4) = { - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
Vậy n = -4 ; - 2 ; -1 ; 1 ; 2 ; 4
b) Để 5n - 6 \(⋮\) n ( n < 1 )
<=> 5n \(⋮\) n ( điều này luôn luôn đúng với mọi n )
6 \(⋮\) n
=> n \(\in\) Ư(6) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 )
Vì n < 1
=> n = - 6 ; - 3 ; - 2 ; - 1
c) Để 143 - 12n \(⋮\) n ( n < 12 )
<=> 12n \(⋮\) n ( điều này luôn luôn đúng với mọi n )
143 \(⋮\) n
=> n \(\in\) Ư(143 ) = { - 143 ; - 13 ; - 11 ; - 1 ; 1 ; 11 ; 13 ; 143 }
Vì n < 12
=> n = - 143 ; - 13 ; - 11 ; - 1 ; 1 ; 11
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }
a)n+3\(⋮\)n b)35-12n\(⋮\)n
n\(⋮\)n 12n\(⋮\)n
n+3-n\(⋮\)n 35-12n-12n\(⋮\)n
3\(⋮\)n 35\(⋮\)n
\(\Rightarrow\)n={1;3} vì n<3 nên :
\(\Rightarrow\)n={1}
Làm tượng tự với các câu sau
Có n + 3 chia hết cho n
=> n chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư(3)
n = { 1 ; 3}
a/ Ta có :
\(n+4⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow4⋮n\)
Vì \(n\in N\Leftrightarrow n\inƯ\left(4\right)=\left\{1,2,4\right\}\)
Vậy .....
b/ \(5n-6⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow\left\{{}\begin{matrix}5n-6⋮n\\5n⋮n\end{matrix}\right.\)
\(\Leftrightarrow6⋮n\)
Vì \(n\in N\Leftrightarrow n\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Vậy ...
cảm ơn !!! ^-^