K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

10n=100000...0000(n chữ số 0)

10n-1=999....999(n chữ số 9)

=>10n-1 luôn chia hết cho 3

10 tháng 10 2015

Ta có:

10n - 1 = 100...0 - 1 (n chữ số 0) = 999...9 (n - 1 chữ số 9)

=> tổng các chữ số của số đó là> (n-1).9. Vì 9 chia hết cho 3 => (n-1).9 chia hết cho 3 => 999...9 (n-1 chữ số 9 chia hết cho 3) => 10n - 1 chia hết cho 3 (đpcm)

8 tháng 11 2024

CCó cái chem chép

25 tháng 4 2018

Bài 3: mk làm theo cách này: từ A = 8k(k2+503)

Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)

\(=k\left(k^2-1+6\right)+6.83k\)

\(=k\left(k^2-1\right)+6k+6.83k\)

\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)

\(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6

Vậy A \(⋮\) 8.6=48

25 tháng 4 2018

í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a) (n2+ 3n 1) (n + 2) n3+ 2

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b) (6n + 1) (n + 5) (3n + 5) (2n 1)

= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5

= 24n + 10

= 2(12n +5) chia hết cho 2

9 tháng 10 2015

Ta có :

10n = 100...0 (n chữ số 0)

=> 10n + 5 = 100...0 (n chữ số 0) + 5 = 100..05 (n - 1 chữ số 0)

Tổng các chữ số của số này là :

1 + 0 + 0 + ... + 0 + 5 (n - 1 chữ số 0) = 1 + 0 + 5 = 6 chia hết cho 3

 Vậy 10n + 5 chia hết cho 3

9 tháng 10 2015

bạn nói ai vậy Hồ Lê Phúc Lộc

9 tháng 10 2015

\(10^n-1=10...000\left(\text{n chữ số 0}\right)-1=99...999\left(\text{n-1 chữ số 9}\right)\)

Tổng các chữ số của 99...999 (n-1 chữ số 9) = 9+9+...+9+9+9 (n-1 số 9)  chia hết cho 9

=> 99...999 chia hết cho 9

     n-1 số 9

Vậy 10n-1 chia hết cho 9(đpcm).

15 tháng 6 2016

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

15 tháng 6 2016

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

21 tháng 10 2019

áp dụng hằng đẳng thức \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc\)

=> A= (n+n+1+n+2)[n2 +(n+1)2 +(n+2)2 -n(n+1)-n(n+2)- (n+1)(n+2)] +3n(n+1)(n+2)

= (3n+3).3 +3n(n+1)(n+2) = 9n(n+1) + 3n(n+1)(n+2)

n(n+1)(n+2) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 3 => 3n(n+1)(n+2) chia hết cho 9

9n(n+10 chia hết cho 9

=> A chia hết cho 9

1 tháng 5 2020

Xét hằng đẳng thức sau đây: x+ y+ z- 3xyz

<=> ( x + y )- 3xy( x + y ) + z- 3xyz

<=> [ ( x + y )+ z3  ] - 3x2y - 3xy- 3xyz

<=> ( x + y + z )[ ( x + y )- ( x + y )z + z2 ] - 3xy ( x + y + z ) 

<=> ( x + y + z )( x2 + 2xy + y- zx - zy + z) - 3xy ( x + y + z ) 

<=> ( x + y + z )( x2 + y- xy - zx - zy + z

<=> x+ y+ z3 = ( x + y + z )( x2 + y- xy - zx - zy + z)  + 3xyz

Áp dụng hằng đẳng thức trên, ta có:

( n + n+ 1 + n + 2 )[  n2 + (n + 1 )- n( n+ 1 ) - (n+2)n - ( n + 1 )( n +2 ) + (n+2)2 ] + 3n( n + 1 )( n + 2 )

<=> ( 3n + 3 )( n2 + n + 2n + 1 - n- n - n2 - 2n - n- 2n - n - 2 + n2 + 4n +4 ) + 3n( n + 1 )( n + 2 )

<=> ( 3n + 3 )3 + 3n( n + 1 )( n + 2 )

<=> 9( n + 1 ) + 3n( n + 1 )( n + 2 )

Vì n( n + 1 )( n + 2 ) là 3 chữ số liên tiếp chia hết cho 6

=> 3n( n + 1 )( n + 2 ) = 3.6 = 18 chia hết cho 9

=> 9( n + 1 ) + 3n( n + 1 )( n + 2 ) chia hết cho 9

=> n3 + ( n + 1 )3 + ( n + 2 )chia hết cho 9 ( đpcm )