\(cmr:\left(10^n-1\right)\)chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)

Ta có :
10n = 100...0 (n chữ số 0)
=> 10n + 5 = 100...0 (n chữ số 0) + 5 = 100..05 (n - 1 chữ số 0)
Tổng các chữ số của số này là :
1 + 0 + 0 + ... + 0 + 5 (n - 1 chữ số 0) = 1 + 0 + 5 = 6 chia hết cho 3
Vậy 10n + 5 chia hết cho 3

\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm

áp dụng hằng đẳng thức \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc\)
=> A= (n+n+1+n+2)[n2 +(n+1)2 +(n+2)2 -n(n+1)-n(n+2)- (n+1)(n+2)] +3n(n+1)(n+2)
= (3n+3).3 +3n(n+1)(n+2) = 9n(n+1) + 3n(n+1)(n+2)
n(n+1)(n+2) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 3 => 3n(n+1)(n+2) chia hết cho 9
9n(n+10 chia hết cho 9
=> A chia hết cho 9
Xét hằng đẳng thức sau đây: x3 + y3 + z3 - 3xyz
<=> ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
<=> [ ( x + y )3 + z3 ] - 3x2y - 3xy2 - 3xyz
<=> ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + 2xy + y2 - zx - zy + z2 ) - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + y2 - xy - zx - zy + z2 )
<=> x3 + y3 + z3 = ( x + y + z )( x2 + y2 - xy - zx - zy + z2 ) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
( n + n+ 1 + n + 2 )[ n2 + (n + 1 )2 - n( n+ 1 ) - (n+2)n - ( n + 1 )( n +2 ) + (n+2)2 ] + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )( n2 + n2 + 2n + 1 - n2 - n - n2 - 2n - n2 - 2n - n - 2 + n2 + 4n +4 ) + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )3 + 3n( n + 1 )( n + 2 )
<=> 9( n + 1 ) + 3n( n + 1 )( n + 2 )
Vì n( n + 1 )( n + 2 ) là 3 chữ số liên tiếp chia hết cho 6
=> 3n( n + 1 )( n + 2 ) = 3.6 = 18 chia hết cho 9
=> 9( n + 1 ) + 3n( n + 1 )( n + 2 ) chia hết cho 9
=> n3 + ( n + 1 )3 + ( n + 2 )3 chia hết cho 9 ( đpcm )
10n=100000...0000(n chữ số 0)
10n-1=999....999(n chữ số 9)
=>10n-1 luôn chia hết cho 3
Ta có:
10n - 1 = 100...0 - 1 (n chữ số 0) = 999...9 (n - 1 chữ số 9)
=> tổng các chữ số của số đó là> (n-1).9. Vì 9 chia hết cho 3 => (n-1).9 chia hết cho 3 => 999...9 (n-1 chữ số 9 chia hết cho 3) => 10n - 1 chia hết cho 3 (đpcm)