PTĐTTNT
ab(a+b)-bc(b+c)+ac(a-c)+2abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vế đầu:
Áp dụng BĐT AM-GM:
$(ab+bc+ac)(a+b+c)\geq 9abc$
$\Leftrightarrow ab+bc+ac\geq 9abc$
$\Rightarrow ab+bc+ac-2abc\geq 9abc-2abc=7abc\geq 0$ do $a,b,c\geq 0$
Vế sau:
Áp dụng BĐT Schur:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(1-2b)(1-2c)$
$\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1$
$\Rightarrow 2abc\geq \frac{8}{9}(ab+bc+ac)-\frac{2}{9}$
$\Rightarrow ab+bc+ac-2abc\leq ab+bc+ac-[\frac{8}{9}(ab+bc+ac)-\frac{2}{9}]=\frac{ab+bc+ac}{9}+\frac{2}{9}$
$\leq \frac{(a+b+c)^2}{27}+\frac{2}{9}$ (theo BĐT AM-GM)
$=\frac{1}{27}+\frac{2}{9}=\frac{7}{27}$
Ta có đpcm.
d) (b+c)(b+a)(c-a)
c) (b-1)(ac+1-a-c)
thông cảm 2 câu đầu chưa nghĩ ra
ab(a+b)-bc(b+c)+ac(a-c)+2abc = [ab(a+b)+abc]-[bc(b+c)+abc]+ac(a-c)
=ab(a+b+c)-bc(a+b+c)+ac(a-c)
=(ab-bc)(a+b+c)+ac(a-c)
=b(a-c)(a+b+c)+ac(a-c)
=(a-c)[b(a+b+c)+ac] = (a-c)(ab+bc+ac+b2)
mk sửa thêm nha :
(a-c)(ab+bc+ac+b2) = (a-c)[(ab+ac)+(bc+b2)] = (a-c)[a(b+c)+b(b+c)]
= (a-c)(a+b)(b+c)