Cho a, b, c, d là các chữ số thỏa mãn:
abacad+abaca-
Tìm giá trị của d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chia hết cho 9, nên tổng các chữ số chia hết cho 9 hay B chia hết cho 9. Vì A có 10 chữ số nên B bé hơn hoặc bằng 9 * 10 = 90.
Như vậy C sẽ bằng 9, vì B chia hết cho 9 mà B bé hơn hoặc bằng 90
Vậy, C=9 (có thể kiểm tra lại bằng máy tính nếu cần)
Vì tổng hai số lớn nhất và bé nhất được lập từ 4 chữ số là 1241
mà 9 + 2 = 11; 8 + 3 = 11; 7 + 4 = 11; 6 + 5 = 11; 0 + 1 = 1
Vì đấy là tổng của số lớn nhất và số bé nhất được lập từ 4 chữ số nên nhất định phải có chữ số hàng đơn vị lớn nhất và bé nhất có thể. vậy 2 chữ số trong 4 chữ số đó là 9; 2
9 + 2 = 11
14 - 1 = 13
13 = 9 + 4 = 8 + 5 = 7 + 6 => 2 số còn lại 8;5 hoặc 7; 6
Ta có 9852 + 2589 = 12441 ( thỏa mãn)
9762 + 2679 = 12441 ( thỏa mãn)
9 + 8 + 5 + 2 = 24
9 + 7 + 6 + 2 = 24
Kết luận a + b + c + d = 24
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$