K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

\(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(tích của \(3\) số tự nhiên liên tiếp và \(1\) số tự nhiên bất kì)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(\left\{{}\begin{matrix}\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\)(tích \(5\) số tự nhiên liên tiếp và 1 tích có thừa số \(5\))

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

\(\left\{{}\begin{matrix}n^5-n⋮6\\n^5-n⋮5\end{matrix}\right.\Leftrightarrow n^5-n⋮30\left(đpcm\right)\)

5 tháng 3 2018

n5−n=n(n4−1)=n(n2−1)(n2+1)n5−n=n(n4−1)=n(n2−1)(n2+1)

=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)

=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)

=n(n−1)(n+1)(n−2)(n+2)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)5n(n−1)(n+1)

--Vì n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)là tích của 5 số nguyên liên tiếp

=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 2;3;5

=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 30 (*)

-- vì n(n−1)(n+1)n(n−1)(n+1) là tích của 3 số nguyên liên tiếp

⇒n(n−1)(n+1)⇒n(n−1)(n+1) chia hết cho 2; 3

⇒n(n−1)(n+1)⋮6⇒n(n−1)(n+1)⋮6

=> 5n(n−1)(n+1)⋮5.6=305n(n−1)(n+1)⋮5.6=30 (**)

từ * và ** => n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30

hay n5−n⋮30(đpcm)

like nhoa !! banh

18 tháng 4 2022

TK ử đây :  https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html

17 tháng 10 2015

n^5-n= (n-1)n(n+1)(n^2+1)

(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)

(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)

còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)

từ (1)(2)(3) => chia hết cho 30

11 tháng 8 2017

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

1 tháng 11 2021

Đặt P = n5 - 5n3 + 4n 

= n5 - n3 - 4n3 + 4n 

= n3(n2 - 1) - 4n(n2 - 1) 

= n3(n - 1)(n + 1) - 4n(n - 1)(n + 1) 

= (n - 1)n(n + 1)(n2 - 4) 

= (n - 2)(n - 1)n(n + 1)(n + 2) (tích 5 số nguyên liên tiếp) 

=> P \(⋮3;5;8\)

mà (3;5;8) = 1

=> P \(⋮3.5.8=120\)

23 tháng 8 2021

Bn tham khảo tại đây nha:

https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html

Ta có: \(n^5-n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n;n-1;n+1 là ba số tự nhiên liên tiếp 

nên \(n\left(n-1\right)\left(n+1\right)⋮6\)

Vì \(n^5-n⋮5\)

mà \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)

nên \(n^5-n⋮30\)

8 tháng 7 2021

60n+45=30(2n+1)+15

Ta có 30(2n+1) chia hết cho 30; 15 không chia hết cho 30 

=> 60n+45 không chia hết cho 30

vào link này nè bạn:https://olm.vn/hoi-dap/detail/2207034897.html

12 tháng 10 2019

bạn làm cho mình đi mình kiếm kh thấy

19 tháng 2 2015

Ta có:

60 chia hết cho 15 nên 60n chia hết cho 15

Mà 45 chia hết cho 15

=>60n+45 chia hết cho 15

Ta lại có:

60 chia hết cho 30 nên 60n chia hết cho 30.

Mà 45 không chia hết cho 30

=> 60n+45 không chia hết cho 30

Vậy với mọi n\(\in\)N thì 60n+45 chia hết cho 15 nhưng không chia hết cho 30.

20 tháng 11 2016
Ta cóTôi không biết
Vậy suy raTôi chả biết gì
Nên suy raTôi chả giải được bài này!