K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Ta có: a+b+c=0
=> (a+b+c)^2=0
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 0
=> 2ab + 2bc + 2ac = -1 ( do a^2 + b^2 + c^2 = 1 )
=> ( 2ab + 2bc + 2ac )^2 = (-1)^2
=> \(4a^2b^2+4b^2c^2+4a^2c^2+8ab^2c+8abc^2+8a^2bc=1\)

=>\(4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)=1\)

=>2\(\left(2a^2b^2+2b^2c^2+2a^2c^2\right)=1\)

(do a+b+c=0)
=>\(\left(2a^2b^2+2b^2c^2+2a^2c^2\right)=\dfrac{1}{2}\)

Lại có: a^2 + b^2 + c^2 =1
=> (a^2 + b^2 + c^2 )^2 = 1
=> a^4 + b^4 + c^4 + \(\left(2a^2b^2+2b^2c^2+2a^2c^2\right)=1\)

=> a^4 + b^4 + c^4 + 1/2 = 1
=> a^4 + b^4 + c^4 = 1/2
Mình làm hơi dài thông cảm! Có gì khó hiểu hỏi mình .

19 tháng 7 2016

Bình phương 2 vế a+b+c=0, tính được ab+bc+ca=-1/2.

Bình phương 2 vế ab+bc+ca=-1/2, tính được (ab)2+(bc)2+(ca)2=1/4

Bình phương 2 vế a2+b2+c2=1, ta có:

                  a4+b4+c4+2[(ab)2+(bc)2+(ac)2]=1

           <=> a4+b4+c4+1/2=1

           <=> M=1/2

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)

hay \(ab+bc+ac=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)

Ta có: \(M=a^4+b^4+c^4\)

\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)

\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy: \(M=\dfrac{1}{2}\)

9 tháng 2 2021

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )

\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)

Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )

\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)

Vậy ...

15 tháng 7 2015

ta có:

(a+b+c)2=a2+b2+c2+2ab+2bc+2ac

<=>(a+b+c)2=a2+b2+c2+2.(ab+bc+ac)

=>02     =       1      +2.(ab+bc+ac)

=>ab+bc+ac = -1/2

(ab+bc+ac)2=a2b2+a2c2+b2c2+ab2c+a2bc+abc2

<=>(ab+bc+ac)2=a2b2+a2c2+b2c2+abc.(a+b+c)

=> (-1/2)2=a2b2+a2c2+b2c2+abc.0

=>a2b2+a2c2+b2c2=1/4

suy ra:

(a2+b2+c2)2=a4+b4+c4+a2b2+a2c2+b2c2

=>12=a4+b4+c4+1/4

=>a4+b4+c4=1-1/4=3/4

31 tháng 8 2017

3/4 bạn nhé

11 tháng 2 2018

ta có:

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac

<=>(a+b+c)^2=a^2+b^2+c^2+2.(ab+bc+ac)

=>0^2      =       1      +2.(ab+bc+ac)

=>ab+bc+ac = -1/2 (ab+bc+ac)2=a2b 2+a2c 2+b2c 2+ab2c+a2bc+abc2

<=>(ab+bc+ac)2=a2b 2+a2c 2+b2c 2+abc.(a+b+c)

=> (-1/2)2=a2b 2+a2c 2+b2c 2+abc.0 =>a2b 2+a2c 2+b2c 2=1/4

suy ra:

(a2+b2+c2 ) 2=a4+b4+c4+a2b 2+a2c 2+b2c 2

=>12=a4+b4+c4+1/4

=>a4+b4+c4=1-1/4=3/4

:A

5 tháng 7 2023

Theo đề có \(a+b+c=0 \Rightarrow (a+b+c)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow ab+bc+ca=\frac{0-2}{2} = -1\) (Vì \(a^2+b^2+c^2=2\))

\(\Rightarrow (ab+bc+ca)^2=1 \)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2bc^2a+2ca^2b=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2 = 1\) (vì \(a+b+c=0\))

Mặt khác từ `a^2+b^2+c^2=2`

`\Rightarrow(a^2+b^2+c^2)^2=2^2`

`\Rightarrowa^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4`

`\Rightarrowa^4+b^4+c^4+2.1=4`

`\Rightarrowa^4+b^4+c^4=4-2=2`

14 tháng 3 2019

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

14 tháng 3 2019

Thank you

20 tháng 11 2016

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-7\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc0=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+0=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)

Xét \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\) 

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)\(\Leftrightarrow a^4+b^4+c^4+98=196\)

\(\Leftrightarrow a^4+b^4+c^4=98\)