K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

ab+ba = 10a+b+10b+a = 11a+11b=11(a+b) chia hết cho 11

=> dpcm 

7 tháng 8 2015

ab+ba

=10a+b+10b+a

=11a+11b

=11(a+b)chia hết cho 11

=>ab+ba chia hết cho 11

7 tháng 8 2015

Ta có: ab+ba = 10a+b + 10b+a = (10a+a)+(10b+b) = 11a + 11b = 11(a+b) luôn chia hết cho 11

Tick đúng cho mk nha!!!!!!!!!!

14 tháng 10 2019

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

14 tháng 10 2019

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

31 tháng 8 2021

a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)

18 tháng 10 2017

a) Theo bài ra ta có:
abcabc = 1000abc + abc
             = ( 1000 +1)abc
             =1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
       1001 chia hết cho 7 => abcabc chia hết cho 7.
       1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3

5 tháng 11 2018

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

20 tháng 12 2015

ab=10.a+b 
ba=10.b+a 
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11

20 tháng 12 2015

cái đầu thiếu đề (không có dữ liệu chính)

Ta có: ab + ba = (10a.1b) + (10b.1a)

=> (1b+10b).(1a+10a)

= 11b + 11a

= 11.2.ab chia hết cho 11

=> đpcm

12 tháng 7 2017

17 tháng 6 2018

a, Gọi ba số tự nhiên liên tiếp là: a; a+1; a+2 tổng của ba số này bằng: a+a+1+a+2 = 3a + 3 = 3(a+1) là một số chia hết cho 3.

b, Gọi bốn số tự nhiên liên tiếp là: a; a+1; a+2; a+3 tổng của bốn số này bằng: a+a+1+a+2+a+3 = 4a+6, là một số chia không hết cho 4 vì 4a ⋮ 4 và 6 không chia hết cho 4

c, Ta có:   a b - b a = 10 a + b - 10 b + a = 9a - 9b = 9(a - b) với a > b

Mà 9(a - b)  ⋮ 9 nên  a b - b a ⋮ 9

d, Ta có:  a b c d = 100 a b + c d =  99 a b + a b + c d

99 a b ⋮ 11 và  a b + c d ⋮ 11 (đề bài), nên  a b c d ⋮ 11

14 tháng 10 2018

a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2

tổng của chúng là :

a + a + 1 + a + 2

= (a + a + a) + (1 + 2)

= 3a + 3

= 3(a + 1) ⋮ 3 (đpcm)

b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2

=> tích của chúng chia hết chô 2 (đpcm)

c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)

aaa = a.111 = a.3.37 ⋮ 37 (đpcm)

d, ab + ba 

= 10a + b + 10b + a

= (10a + a) + (10b + b)

= 11a + 11b

= 11(a + b) ⋮ 11 (đpcm)

14 tháng 10 2018

d, ab + ba 

= 10a + b + 10b + a

= a ( 10 + 1) + b(10+1)

= a.11 + b.11

= ( a + b ).11 \(⋮\)11

    Vậy ab + ba \(⋮\)11

             Hok tốt