Chung minh
(a^2+b^2))a^2+1)>=4a^2b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2
= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó (2a + 3c)(2b - 3d)
= (2bk + 3dk)(2b - 3d)
= k(2b + 3d)(2b - 3d) (1)
(2a - 3c)(2b + 3d)
= (2bk - 2dk)(2b + 3d)
= k(2b - 3d)(2b + 3d) (2)
Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)
b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)
Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)
Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)
Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)
Câu 2 cũng tương tự nên tự làm đi
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
@Hà Nhung Huyền Trang
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
Ta có:
Vt = 1/a +1/b +1/b >= 9/(a+2b)
Mặt khác
(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2
=>(a+2b)<=3c
9/(a+2b)>=9/3c =3/c
=Vt >=3/c dpcm
Dấu "="xảy ra khi a=b=c =1
Ta có:
Vt = 1/a +1/b +1/b >= 9/(a+2b)
Mặt khác
(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2
=>(a+2b)<=3c
9/(a+2b)>=9/3c =3/c
=Vt >=3/c dpcm
Dấu "="xảy ra khi a=b=c =1
Ta có BĐT \(a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a-b\right)^2\ge0\) *đúng*
Áp dụng BĐT trên vào bài toán:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+1\ge2a\end{matrix}\right.\)
Nhân theo vế 2 BĐT trên:
\(VT\ge2ab\cdot2a=4a^2b\)
Khi \(a=b=1\)