Cho x\(\ge1\) Tìm GTNN của bt y=\(3x+\frac{1}{2x} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{5}{2}x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{5}{2}.1=\dfrac{7}{2}\)
Dấu "=" xảy ra khi \(x=1\)
Ta có: Q = \(3x+\dfrac{1}{2x}=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{5x}{2}\)
Áp dụng bđt cosi cho hai số dương x/2, 1/2x và bđt x \(\ge\)1
Ta có: Q \(\ge2\sqrt{\dfrac{x}{2}\cdot\dfrac{1}{2x}}+\dfrac{5}{2}\cdot1=2\cdot\dfrac{1}{2}+\dfrac{5}{2}=\dfrac{7}{2}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{1}{2x}\\x=1\end{matrix}\right.\) <=> x = 1
Vậy MinQ = 7/2 <=> x = 1
\(x+\dfrac{1}{x}=3\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\\ \Leftrightarrow x^3+\left(\dfrac{1}{x}\right)^3+3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}+3\cdot3=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Từ giả thiết suy ra
\(\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\left(x+y+z\right)-3\) (1)
Lại có \(3x^2+4y^2+5z^2=52\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)=52+2x^2+y^2\ge52+2.1+1=55\)
\(\Rightarrow x^2+y^2+z^2\ge11\) (2)
Từ (1) và (2) ta có \(\left(x+y+z\right)^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\ge11+4\left(x+y+z\right)-6\)
\(\Leftrightarrow\left(x+y+z\right)^2-4\left(x+y+z\right)-5\ge0\)
\(\Leftrightarrow P^2-4P-5\ge0\)
\(\Leftrightarrow\left(P+1\right)\left(P-5\right)\ge0\)
\(\Rightarrow P\ge5\)
Vậy \(P_{min}=5\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=3\end{cases}}\)
Với \(x=y=2\Rightarrow A=8\)
Ta cm \(A=8\) là GTNN của \(A\)
Thật vậy ta cần chứng minh \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Mà \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Cần chứng minh \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\Leftrightarrow\frac{\left(x+y-4\right)^2}{x+y-2}\ge0\left(x;y\ge1\right)\)
BĐT cuối cùng luôn đúng -->Min=8 khi x=y=2
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2018\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2018\)
\(=\left(2x^2-3x\right)^2-1+2018\)
\(=\left(2x^2-3x\right)^2+2017\ge2017\)
\(minA=2017\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)