K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

áp dụng bất đẵng thức côsi cho 2 số dương \(ac\)\(\dfrac{b}{c}\)

ta có : \(ac+\dfrac{b}{c}\ge2\sqrt{ac.\dfrac{b}{c}}\Leftrightarrow ac+\dfrac{b}{c}\ge2\sqrt{ab}\) (đpcm)

5 tháng 10 2018

\(a>0;b>0;c>0\Rightarrow\dfrac{ab}{c}>0;\dfrac{bc}{a}>0;\dfrac{ac}{b}>0\)

Áp dụng bất đẳng thắng Cosi cho các cặp:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\)

\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\)

\(\Rightarrow2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\left(dpcm\right)\)

\("="\Leftrightarrow a=b=c\)

5 tháng 10 2018

trong câu hỏi tương tự cũng có mà

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

Điều kiện \(ab+bc+ac=abc\) là không cần thiết và bạn cần sửa lại đề bài là: CMR \(\sqrt{\frac{b^2+2a^2}{ab}}+\sqrt{\frac{c^2+2b^2}{bc}}+\sqrt{\frac{a^2+2c^2}{ac}}\geq 3\sqrt{3}\)

--------------------------

Áp dụng BĐT AM-GM ta có:

\(b^2+2a^2=b^2+a^2+a^2\geq 3\sqrt[3]{b^2a^4}\)

\(\Rightarrow \frac{b^2+2a^2}{ab}\geq \frac{3\sqrt[3]{b^2a^4}}{ab}=3\sqrt[3]{\frac{a}{b}}\)

\(\Rightarrow \sqrt{\frac{b^2+2a^2}{ab}}\geq \sqrt{3}.\sqrt[6]{\frac{a}{b}}\)

Hoàn toàn TT: \(\sqrt{\frac{c^2+2b^2}{bc}}\geq \sqrt{3}.\sqrt[6]{\frac{b}{c}}; \sqrt{\frac{a^2+2c^2}{ac}}\geq \sqrt{3}.\sqrt[6]{\frac{c}{a}}\)

Cộng theo vế những BĐT vừa thu được:

\(\Rightarrow \text{VT}\geq \sqrt{3}\left(\sqrt[6]{\frac{a}{b}}+\sqrt[6]{\frac{b}{c}}+\sqrt[6]{\frac{c}{a}}\right)\)

\(\geq \sqrt{3}.3\sqrt[18]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\sqrt{3}\) (tiếp tục áp dụng BĐT AM-GM)

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

15 tháng 8 2018

a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)

''='' xảy ra khi a = b

b/ Sửa đề chút nhé: CMR:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)

Áp dụng bđt AM-GM có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);

Tương tự ta có:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)

Cộng 2 vế ba bđt trên ta được:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)

''='' xảy ra khi a = b = c

20 tháng 8 2018

Cảm ơn nha. À mà mik ấn lộn đề.

30 tháng 9 2017

ta có : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(ac+bc+ab\right)\)

\(=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ab}{2}+\dfrac{ac}{2}+\dfrac{bc}{2}+\dfrac{ac}{2}\right)\)

\(\ge2.\sqrt{\dfrac{a^3}{b}.bc}+2\sqrt{\dfrac{b^3}{c}.ca}+2\sqrt{\dfrac{c^3}{a}.ab}-2\sqrt{\dfrac{ab.bc}{4}}-2\sqrt{\dfrac{ab.ac}{4}}-2\sqrt{\dfrac{bc.ac}{4}}\)

\(\ge2a\sqrt{ac}+2b\sqrt{ba}+2c\sqrt{cb}-b\sqrt{ac}-a\sqrt{bc}-c\sqrt{ab}=a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\left(ĐPCM\right)\)

30 tháng 9 2017

Áp dụng BĐT cauchy-schwarz:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

BĐT cần chứng minh tương đương :

\(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3c}+\sqrt{b^3a}+\sqrt{c^3b}\right)\)

Thật vậy, Áp dụng BĐT \(\left(X+Y+Z\right)^2\ge3\left(XY+YZ+ZX\right)\)

Với \(\left\{{}\begin{matrix}X=a+\sqrt{bc}-\sqrt{ac}\\Y=b+\sqrt{ac}-\sqrt{ab}\\Z=c+\sqrt{ab}-\sqrt{bc}\end{matrix}\right.\) ta có ngay ĐPCM. ( mất chút time khai triển)

Dấu = xảy ra khi X=Y=Z hay a=b=c

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)