Cho biểu thức A= √x +1/√x -1.
Cmr với x=16/9. x=25/9
Thì A có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=\frac{16}{9}\) vào biểu thức ta có:
\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Vậy \(A=7\)
Thay \(x=\frac{25}{9}\) vào biểu thức ta có:
\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
Vậy \(A=4\)
Sửa đề:: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Thay x=16/9 vào A, ta được:
\(A=\dfrac{\sqrt{\dfrac{16}{9}}+1}{\sqrt{\dfrac{16}{9}}-1}=\dfrac{\dfrac{4}{3}+1}{\dfrac{4}{3}-1}=\dfrac{7}{3}:\dfrac{1}{3}=7\) là số nguyên
Thay x=25/9 vào A, ta được:
\(A=\dfrac{\sqrt{\dfrac{25}{9}}+1}{\sqrt{\dfrac{25}{9}}-1}=\dfrac{\dfrac{5}{3}+1}{\dfrac{5}{3}-1}=\dfrac{8}{3}:\dfrac{2}{3}=4\) là số nguyên
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)
với x=16/9 thì căn bậc 2 của x=4/3 hoặc -4/3 thay vào được 7 là số nguyên
tương tự 25/9= 5/3 hoặc -5/3 cũng được số nguyên