K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

bạn nào giải nhanh giúp mình

1 tháng 7 2016

Vì |x-2| \(\ge\) 0 với mọi x

=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x

=>MaxA=1/2

Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)

Vậy..............

5 tháng 12 2017

\(Q=\left(x-1\right)^2-2\left(x+3\right)^2=x^2-2x+1-2x^2-12x-18=-x^2-14x-17\)

\(Q=32-\left(x^2+14x+49\right)=32-\left(x+7\right)^2\)

Ta thấy (x+7)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là =0

Mà Q lớn nhất khi (x+7)2 nhỏ nhất

Vậy Q lớn nhất = 32-0 = 32 khi và chỉ khi (x+7)2 = 0 => x = -7

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

24 tháng 6 2018

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

5 tháng 7 2016

1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)

     =\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)

     =\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1

Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1

2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)

      =\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)

Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

15 tháng 9 2021

\(A=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(minA=-56\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(B=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

\(maxB=5\Leftrightarrow x=2\)

15 tháng 9 2021

MinA=0

⇔x=1 hoặc x=-3 hoặc x=-2 hặc x=-6

B\(=-x^2+2x+1+2x\)

\(=-\left(x^2-2x+1\right)+2\left(1+x\right)\)

\(=-\left(x-1\right)^2-2\left(x-1\right)\)

 

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam