cho P=\(\dfrac{x}{\sqrt{x}+1}\)
Tìm m để x thỏa mãn ( \(\sqrt{x}\) +1) P=\(\sqrt{x}\) +m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Ta có:
\(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) (ĐK: \(x\ne4;x\ge0\))
\(B=\dfrac{x}{\left(\sqrt{x}\right)^2-2^2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(B=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Rightarrow P=\dfrac{A}{B}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}}{\sqrt{x}-2}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\cdot\sqrt{x}}=\dfrac{x-4}{x}\) (ĐK: \(x\ne0\))
Theo đề ta có:
\(P\cdot x\le10\sqrt{x}-29-\sqrt{x}+25\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\dfrac{x-4}{x}\cdot x\le9\sqrt{x}-4\)
\(\Leftrightarrow x-4\le9\sqrt{x}-4\)
\(\Leftrightarrow x-9\sqrt{x}\le0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-9\right)\le0\)
Mà: \(\sqrt{x}\ge0\)
\(\Leftrightarrow\sqrt{x}-9\le0\)
\(\Leftrightarrow\sqrt{x}\le9\)
\(\Leftrightarrow x\le81\)
Kết hợp với đk:
\(0\le x\le81\)
a: \(P=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}\)
Khi x=4-2căn 3 thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\sqrt{3}+3}{2}\)
Ta có: \(\Delta=4m^2+4m-11\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)
Để phương trình có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)
Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)
\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)
\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)
\(\Rightarrow\) ...
câu 2:\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\Leftrightarrow\sqrt{x}-2-mx-m+2=0\Leftrightarrow\sqrt{x}=m\left(x+1\right)\Leftrightarrow m=\frac{\sqrt{x}}{x+1}\)
vì x>=0 =>x+1>0 \(\sqrt{x}\ge0\)=> m phải >=0
\(x\ne4\Rightarrow x+1\ne5;\sqrt{x}\ne2\Rightarrow m\ne\frac{2}{5}\)
\(x\ne9\Rightarrow x+1\ne10;\sqrt{x}\ne3\Rightarrow m\ne\frac{3}{10}\)
a: \(B=\dfrac{1}{\sqrt{x}+1}\)
\(B-1=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}>=0\)
=>B>=1
b: \(P=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(P\cdot\sqrt{x}+2x-\sqrt{x}=3x-2\sqrt{x-4}+3\)
=>\(x+\sqrt{x}+1+2x-\sqrt{x}=3x+3-2\sqrt{x-4}\)
=>\(-2\sqrt{x-4}+3=1\)
=>x-4=1
=>x=5
điều kiện xát định \(x\ge0\)
ta có : \(\left(\sqrt{x}+1\right).P=\sqrt{x}+m\Leftrightarrow\left(\sqrt{x}+1\right).\dfrac{x}{\sqrt{x}+1}=\sqrt{x}+m\)
\(\Leftrightarrow x=\sqrt{x}+m\) \(\Leftrightarrow m=x-\sqrt{x}\) với \(x\ge0\)