K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

B=25-x2+4xy-4y2=52-(x-2y)2=(5-x+2y)(5+x-2y)

a: \(=4xy\left(1-5x^2y\right)\)

b: \(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

c: \(=x\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(x+y\right)\)

d: \(=\left(x+2y\right)^2-36=\left(x+2y+6\right)\left(x+2y-6\right)\)

21 tháng 8 2021

1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)

2, \(x^2-10x+25=\left(x-5\right)^2\) 

3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

21 tháng 8 2021

1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)

2) \(x^2-10x+25=\left(x-5\right)^2\)

3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)

4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

28 tháng 10 2017

a, \(x^4+2x^2+1-x^2\)

\(\left(x^2+1\right)^2-x^2\)

\(\left(x^2+x+1\right)\left(x^2-x+1\right)\)

b, \(x^4+x^2+1\)

\(x^4+2x^2+1-x^2\)

= .. ( như phần a )

c, \(y^4+64\)

\(\left(y^2+8\right)\left(y^2-8\right)\)

d, \(4xy+3z-12y-xz\)

\(=4y\left(x-3\right)-z\left(x-3\right)\)

\(=\left(x-3\right)\left(4y-z\right)\)

e, \(x^2-4xy+4y^2-z^2+6z-9\)

\(=\left(x-2y\right)^2-\left(z-3\right)^2\)

g, \(x^2-4xy+5x+4y^2-10y\)

\(=\left(x^2-4xy+4y^2\right)+\left(5x-10y\right)\)

\(=\left(x-2y\right)^2+5\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+5\right)\)

h, \(x^2-7x+6\)

\(=x^2-6x-x+6\)

\(=x\left(x-6\right)-\left(x-6\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

i, \(x^3+5x^2+6x+2\)

\(=x^3+x^2+4x^2+4x+2x+2\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+2\right)\)

28 tháng 10 2017

phần b là 6^4 nhé

16 tháng 10 2021

x2 - 4xy + 4y2 - z2 + 2zt - t2

= (x2 - 4xy + 4y2) - (z2 - 2zt + t2)

= (x - 2y)2 - (z - t)2

= (x - 2y + z - t)(x - 2y - z + t)

5 tháng 11 2021

\(-\left(x+2y\right)^2\)

5 tháng 11 2021

\(-\left(x^2+4xy+4y^2\right)\)

\(-\left(x+2y\right)^2\)

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

22 tháng 12 2019

a) Áp dụng HĐT 1 thu được ( 2 x   +   y ) 2 .

b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được

[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).

c) Ta có: 9 - 6x +  x 2  -  y 2 = ( 3   -   x ) 2  -  y 2  = (3 - x - y)(3 -x + y).

d) Ta có: -(x + 2) + 3( x 2  - 4) = -{x + 2) + 3(x + 2)(x - 2)

= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).

12 tháng 12 2017

a ) \(2x-1-x^2\)

\(=\left(x-1\right)-\left(x^2-x\right)\)

\(=\left(x-1\right)\left(1-x\right)\)

\(=-\left(x-1\right)^2\)

b) \(8x^3+y^6\)

\(=\left(2x+y^2\right)\left(4x^2-2xy^2+y^4\right)\)

c) \(x^2-16+4xy+4y^2\)

\(=\left(x^2+4xy+4y^2\right)-16\)

\(=\left(x+2y\right)^2-16\)

\(=\left(x+2y+4\right)\left(x+2y-4\right)\)

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

5 tháng 11 2017

a) Cách 1.

Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)

= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).

Cách 2.

Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)

= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).

b) Biến đổi được a 4   -   9 rt 3   +   a 2 -9a = (a- 9)a( a 2  +1).

c) Biến đổi được 3 x 2  + 5y - 3xy + (-5x) = (x - y)(3x - 5).

d) Biến đổi được  x 2  - (a + b)x + ab = (x- a)(x - b).

e) Ta có 4 x 2 - 4xy + y 2   –   9 t 2 =  ( 2 x   -   y ) 2   -   ( 3 t ) 2

= (2x - y - 3t )(2x - y + 31).

g) Ta có  x 3   -   3 x 2 y   +   3 xy 2   -   y 3   -   z 3

= ( x   -   y ) 3   -   z 3 = (x - y - z)( x 2   +   y 2   +   z 2  - 2xy + xz - yz).

h) Ta có x 2   -   y 2 + 8x + 6y+ 7 = ( x 2  +8x + 16) - ( y 2  - 6y+ 9)

= ( x   +   4 ) 2   - ( y - 3 ) 2  =(x-y + 7)(x + y + l).