Tính B = \(\left(200^{-2}-1\right).......\left(101^{-2}-1\right)\)
AI NHANH K NHA , ĐÚNG NỮA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
B =\(\left(200^{-2}-1\right)\left(199^{-2}-1\right)...\left(101^{-2}-1\right)=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}...\frac{1-101^2}{101^2}=\frac{1^2-200^2}{200^2}.\frac{1^2-199^2}{199^2}....\frac{1^2-101^2}{101^2}\)
\(=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}...\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)
\(=-\left(\frac{199.201}{200^2}.\frac{198.200}{199^2}...\frac{100.102}{101^2}\right)=-\frac{199.201.198.200..100.102}{200.200.199.199...101.101}\)
\(=-\frac{\left(199.198...100\right)\left(201.200...102\right)}{\left(200.199...101\right).\left(200.199...101\right)}=-\frac{100.201}{200.101}=-\frac{201}{202}\)
Bài giải
\(B=\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(B=\left[\left(\frac{1}{200}\right)^2-1^2\right]\left[\left(\frac{1}{199}\right)^2-1^2\right]\left[\left(\frac{1}{198}\right)^2-1^2\right]...\left[\left(\frac{1}{101}\right)^2-1^2\right]\)
\(B=\left(\frac{1}{200}+1\right)\left(\frac{1}{200}-1\right)\left(\frac{1}{199}+1\right) \left(\frac{1}{199}-1\right)..\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)
\(B=\frac{201}{200}\cdot\frac{-199}{200}\cdot\frac{200}{199}\cdot\frac{-198}{199}\cdot...\cdot\frac{-100}{101}\cdot\frac{102}{101}\)
\(B=\frac{201\cdot\left(-199\right)\cdot200\cdot\left(-198\right)\cdot...\cdot\left(-100\right)\cdot102}{200\cdot200\cdot199\cdot199\cdot...\cdot101\cdot101}=\frac{100\cdot201}{200\cdot101}=\frac{201}{202}\)
tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào
\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)
\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)
\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)
\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)
\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)
\(C=\left(\dfrac{1}{200^2}-1\right)\left(\dfrac{1}{199^2-1}\right)...\left(\dfrac{1}{101^2-1}\right)\)
\(C=\dfrac{1-200^2}{200^2}.\dfrac{1-199^2}{199^2}.\dfrac{1-198^2}{198^2}...\dfrac{1-101^2}{101^2}\)
\(C=\dfrac{\left(1-200\right)\left(1+200\right)}{200^2}.\dfrac{\left(1-199\right)\left(1+199\right)}{199^2}...\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}.\dfrac{\left(1-101\right)\left(1+101\right)}{101^2}\) \(C=\dfrac{-199.201}{200.200}.\dfrac{-198.200}{199.199}.\dfrac{-197.199}{198.198}...\dfrac{-99.101}{100.100}.\dfrac{-100.102}{101.101}\)
\(C=\dfrac{199.201}{200.200}.\dfrac{198.200}{199.199}.\dfrac{197.199}{198.198}...\dfrac{99.101}{100.100}.\dfrac{100.102}{101.101}\)
\(\Rightarrow C=\dfrac{200}{2.101}=\dfrac{201}{202}\)
Câu 2 mik chịu r sorry:(
1/a) 12 - x= 1-(-5)
12 - x = 6
x= 12-6
x=6
b)| x+4|= 12
x+4 = \(\pm\)12
*x+4=12
x=8
*x+4= -12
x=-16
2/Tìm n
\(n-5⋮n+2\)
=> \(n+2-7⋮n+2\)
mà \(n+2⋮n+2\)
=> 7\(⋮\)n+2
=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
3/a)4.(-5)2 + 2.(-12)
= 2.2.(-5)2 + 2.(-12)
=2[2.25.(-12)]
=2.(-600)
=-1200
rút 4 ra ngoài nhan bạn 4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2
mik xét cái này cho dễ nhìn nhan
2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2
= (x+1/x)^2(2-x^2-1/x^2)
= -(x+1/x)^2(x^2-2+1/x^2)
= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2
thế ở trên ta có
4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2
4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16
4.4=x^2+8x+16
suy ra x^2+8x=0
x(x+8)=0
suy ra x=0 hoặc x=-8
mak nhìn để bài thì x=0 ko được nên x=-8
Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)
Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)
Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)
Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=1+\frac{3}{2}+...............+\frac{21}{2}\)
\(=\frac{2+3+......+21}{2}\)
\(=\frac{230}{2}=165\)