Tìm x biết 3(x_2)_2(x+1)=-30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-2m+1-2m+3=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm x1;x2
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=2\)
Thay vào ta đc \(4\left(m-1\right)^2-4\left(2m-3\right)=2\Leftrightarrow4m^2-8m+4-8m+12=2\)
\(\Leftrightarrow4m^2-16m+14=0\Leftrightarrow m=\dfrac{4\pm\sqrt{2}}{2}\)
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)
$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$
$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$
$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$
$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$
$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$
$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$
$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)
Sửa đề: \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(m-3\right)^2+4\left(2m^2-3m\right)>0\\ \Leftrightarrow9m^2-18m+9>0\\ \Leftrightarrow9\left(m-1\right)^2>0\left(\text{luôn đúng},\forall m\ne1\right)\)
Do đó PT có 2 nghiệm phân biệt với mọi \(m\ne1\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=3-m\\x_1x_2=3m-2m^2\end{matrix}\right.\)
Ta có \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\Leftrightarrow\dfrac{3m-2m^2}{3-m}=-\dfrac{m^2}{2}\)
\(\Leftrightarrow4m^2-12m=3m^2-m^3\\ \Leftrightarrow m^3+m^2-12m=0\\ \Leftrightarrow m\left(m^2+4m-3m-12\right)=0\\ \Leftrightarrow m\left(m+4\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\) thỏa yêu cầu đề
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\sqrt{5}\\x_1x_2=1\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2=\left(\sqrt{5}\right)^2-5.1=0\)
\(B=\frac{1}{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}=\frac{1}{\left(\sqrt{5}\right)^3-3.1.\sqrt{5}}=\frac{1}{2\sqrt{5}}\)
\(C=\frac{x_1+x_2}{x_1x_2}=\sqrt{5}\)
\(D=\frac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=\frac{5-2}{1^2}=3\)
\(E=\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)\Rightarrow E^2=x_1x_2\left(x_1+x_2+2\sqrt{x_1x_2}\right)\)
\(\Rightarrow E^2=1\left(\sqrt{5}+2.1\right)\Rightarrow E=\sqrt{2+\sqrt{5}}\)
\(F=\frac{3\left(x_1+x_2\right)+5x_1x_2}{x_1x_2\left(x_1^2+x_2^2\right)}=\frac{3\left(x_1+x_2\right)-5x_1x_2}{x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}=\frac{3\sqrt{5}-5}{3}\)
Bổ sung thêm cho bạn Song Thư:
∆ = b² - 4ac = [-(m + 3)]² - 4(2m + 2)
= m² + 6m + 9 - 8m - 8
= m² - 2m + 1
= (m - 1)² ≥ 0 với mọi m
Vậy phương trình luôn có hai nghiệm phân biệt
\(x^2-\left(m+3\right)x+2m+2=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+3\\x_1x_2=\dfrac{c}{a}=2m+2\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-13=0\)
\(\Leftrightarrow\left(m+3\right)^2-2\left(2m+2\right)-13=0\)
\(\Leftrightarrow\left(m^2+6m+9\right)-4m-4-13=0\)
\(\Leftrightarrow m^2+2m-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Tự xử lí delta nha
Theo vi-et: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-\left(m-1\right)\left(m-3\right)\end{matrix}\right.\)
Theo đề: \(\frac{1}{4}.\left(2m\right)^2-\left(m-1\right)\left(m-3\right)-2.2m+3=0\)
<=> \(m^2-m^2+4m-3-4m+3=0\) (TM)
Vậy vs mọi m thỏa delta thì ...