K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2015

sai rùi

\(x+3x-5x=\sqrt{x^2}\)

\(x\left(1+3-5\right)=\left|x\right|\)

\(-x=\left|x\right|\)

\(\Leftrightarrow x\le0\)

8 tháng 10 2015

ơ!bài này dễ mà

mk ra cho vui mà các bạn không giải dc ak

\(\Rightarrow-x=\sqrt{x^2}\)

\(\Rightarrow-x=x\)

=>x=0

bài này dễ mà

@@ thua các bạn luôn

21 tháng 5 2017

\(P\left(x\right)=5x^3+4x^2+3x+2=\left(4x^3+4x^2+4x+2\right)+x^3-x.\)

Do \(4x^3+4x^2+4x+2⋮2\),lại có \(x^3-x=x\left(x^2-1\right)=\left(x-1\right)x\left(x+1\right)⋮2\)

\(=>P\left(x\right)⋮2\)

=>P(x) là số chẵn với mọi số tự nhiên x

=>không tồn tại

NV
18 tháng 8 2021

\(P=\dfrac{3\sqrt{x}+6-1}{\sqrt{x}+2}=3-\dfrac{1}{\sqrt{x}+2}< 3\)

\(P=\dfrac{6\sqrt{x}+10}{2\left(\sqrt{x}+2\right)}=\dfrac{5\left(\sqrt{x}+2\right)+\sqrt{x}}{2\left(\sqrt{x}+2\right)}=\dfrac{5}{2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\ge\dfrac{5}{2}\)

\(\Rightarrow\dfrac{5}{2}\le P< 3\) ; \(\forall x\in\) TXĐ nên không tồn tại x để P nguyên (giữa 5/2 và 3 không có số nguyên nào)

A(x)=5x^4-3x^3-7x^2+4x+2

B(x)=-5x^4+3x^3+6x^2-2x-30

A(x)+B(x)=-x^2+2x-28=-(x-1)^2-27<0

=>A(x) và B(x) ko đồng thời dương

a) ĐKXĐ: \(x\ge2\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)

15 tháng 9 2021

a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)

e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)

f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)

\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)

h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)

15 tháng 9 2021

a. \(x\ge0\)

b. \(x< 0\)

c. \(x\le4\)

d. \(x\ge\dfrac{-7}{3}\)

e. \(x\le\dfrac{4}{3}\)

f. \(x>1\)

g. Mọi x

h. \(x>2\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

`@` `\text {Ans}`

`\downarrow`

`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`

`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`

`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`

`= 0 + 0 + 0 + 0`

`= 0`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`@` `\text {Kaizuu lv uuu}`

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn