K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

\(VT=\dfrac{\sin x}{\sin x-cosx}-\dfrac{cosx}{sinx+cosx}\\ =\dfrac{sin^2x+\sin x\cos x-\sin x\cos x+\cos^2x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\\ =\dfrac{1}{\sin^2x-\cos^2x}\)

\(VP=\dfrac{1+\cot^2x}{1-\cot^2}\\ =\left(1+\cot^2x\right)\cdot\dfrac{1}{1-\cot^2x} \\=\dfrac{1}{\sin^2x}\cdot\dfrac{1}{1-\cot^2x}\\ =\dfrac{1}{\sin^2x-\sin^2x\cdot\cot^2x}\\ =\dfrac{1}{\sin^2x-\cos^2x}=VT\)

a: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=-x\cdot cos\left(-x\right)=-x\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

b: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=5\cdot sin^2\left(-x\right)+1=5\cdot sin^2x+1=f\left(x\right)\)

=>f(x) chẵn

c: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=sin\left(-x\right)\cdot cos\left(-x\right)=-sinx\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

 

28 tháng 8 2016

1/ Txđ của cả 2 hàm số trên là: D = R
Ta thấy: x thuộc D và - x cũng thuộc D
y = sin x - cos x = f(x)
Ta có: f(-x) = sin (-x) - cos (-x) = - sin x - cos x
=> Hàm số này không chẵn cũng không lẻ

2/ -Tập xác định:D=R => tập xác dịnh là tập đối xứng 
-với mỗi x thuộc D thì -x thuộc D 
-xét trường hợp: 
+ f(-x)=f(x) => hàm chẵn 
+ f(-x)=-f(x) => hàm lẻ 
+còn lại là hàm số lhông chẵn không lẽ 
trường hợp trên là hàm không chẵn không lẻ

28 tháng 8 2016

2/ cụ thể ra sao ạ

 

25 tháng 8 2016

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

25 tháng 8 2016

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p

24 tháng 5 2023

Học bài trước rồi à :D

a: A=(sinx+cosx)^2-1=m^2-1

b: B=căn (sinx+cosx)^2-4sinxcosx=căn m^2-4(m^2-1)=căn -3m^2+4

c: C=(sin^2x+cos^2x)^2-2(sinx*cosx)^2=1-2m^2

 

28 tháng 7 2018

xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html