Cho Δ ABC = Δ HIK
CMR : Δ ABC có 2 góc bằng nhau
MK ĐAG CẦN GẤP GIÚP MK NHA MAI NỘP BÀI RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai, nếu tam giác ABC = tam giác HIK thì không chắc rằng tam giác ABC có hai góc bằng nhau, cần thêm một số điều kiện.
Bạn xem lại đề!
ta có :
tam giác ABC=tam giácDEH (1)
VÀ TAM GIÁC DEF=TGIACSHIK HIK(2)
TỪ (1)và(2)suy ra tam giác ABC=tam giác HIK
VẬY TA CÓ THỂ SUY RA TAM GIACSABC=TAM GIÁC HIK
a/ Xét tam giác AHB và tam giác AHC có:
AB = AC (GT)
AH: cạnh chung
góc HAB = góc HAC (GT)
=> tam giác AHB = tam giác AHC (c.g.c)
b/ Ta có: tam giác AHB = tam giác AHC (câu a)
=> góc B = góc C (2 góc tương ứng)
c/ Ta có: tam giác AHB = tam giác AHC (câu a)
=> BH = HC (2 cạnh tương ứng) (1)
=> góc AHB = góc AHC (2 góc tương ứng) (2)
Mà góc AHB + góc AHC = 1800
=> góc AHB = AHC = 900 (3)
Từ (1);(2);(3) => AH là trung trực của BC
Xét tam giác AHB và tam giác EHC có:
góc AHB = góc EHC (đối đỉnh)
BH = CH (đã chứng minh)
HE = HA (GT)
=> tam giác AHB = tam giác EHC
mk xin lỗi nhé, khuya rồi mà mai mk phải đi hc sớm
nên giờ mk giải đến đây, mai mk giải tiếp nhé
Mk giải tiếp nhé:
e/ Ta có: tam giác AHB = tam giác EHC (câu d)
=> \(\widehat{BAH}\)=\(\widehat{HEC}\) (2 góc tương ứng)
Mà góc BAH, góc HEC ở vị trí so le trong
=> AB//CE (đpcm)
f/ Xét tam giác AHC và tam giác BHE có:
góc AHC = góc BHE (đối đỉnh)
AH = HE (GT)
BH = HC (đã chứng minh)
=> tam giác AHC = tam giác BHE (c.g.c)
Ta có: \(\widehat{ABH}\)=\(\widehat{ECH}\) (vì tam giác ABH = tam giác CHE) (1)
Ta lại có: \(\widehat{HBE}\)=\(\widehat{ACH}\)(vì tam giác AHC = tam giác BHE) (2)
Từ (1), (2) => \(\widehat{ABH}\)+\(\widehat{HBE}\)=\(\widehat{ECH}\)+\(\widehat{ACH}\)
=> \(\widehat{ABE}\)=\(\widehat{ACE}\) (đpcm)
h/ Ta có: tam giác AHC = tam giác BHE (câu f)
=> \(\widehat{CAH}\)=\(\widehat{HEB}\) (2 góc tương ứng)
Mà góc CAH, góc HEB ở vị trí so le trong
=> BE//AC (đpcm)
g/ Xét tam giác BAC và tam giác BEC có:
BC: cạnh chung
AB = CE (vì tam giác ABH = tam giác ECH)
AC = BE (vì tam giác AHC = tam giác BHE)
=> tam giác BAC = tam giác BEC (c.c.c)
=>\(\widehat{ABC}\)=\(\widehat{EBC}\) (2 góc tương ứng)
=> BC là phân giác của góc ABE
a: Xét ΔIKE và ΔIML có
\(\widehat{IKE}=\widehat{IML}\)
\(\widehat{KIE}=\widehat{MIL}\)
Do đó: ΔIKE\(\sim\)ΔIML
b: Xét ΔMIL và ΔMKE có
\(\widehat{IML}=\widehat{KME}\)
\(\widehat{ILM}=\widehat{KEM}\)
Do đó: ΔMIL\(\sim\)ΔMKE
Suy ra: MI/MK=ML/ME
hay \(MI\cdot ME=MK\cdot ML\)
Bài 4:
a) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
b) Ta có: ΔABD=ΔAED(cmt)
nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)(cmt)
nên \(\widehat{FBD}=\widehat{CED}\)
Ta có: ΔABD=ΔAED(cmt)
nên BD=ED(hai cạnh tương ứng)
Xét ΔBDF và ΔEDC có
BD=ED(cmt)
\(\widehat{FBD}=\widehat{CED}\)(cmt)
BF=EC(gt)
Do đó: ΔBDF=ΔEDC(c-g-c)
⇒DF=DC(hai cạnh tương ứng)
c) Ta có: ΔBDF=ΔEDC(cmt)
nên \(\widehat{BDF}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{BDF}+\widehat{CDF}=180^0\)(hai góc kề bù)
nên \(\widehat{EDC}+\widehat{FDC}=180^0\)
\(\Leftrightarrow\widehat{EDF}=180^0\)
hay E,D,F thẳng hàng(đpcm)
d) Ta có: AB+BF=AF(B nằm giữa A và F)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(gt)
và BF=EC(gt)
nên AF=AC
hay A nằm trên đường trung trực của CF(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DF=DC(cmt)
nên D nằm trên đường trung trực của CF(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của CF
hay AD⊥FC(đpcm)
A B C O D E
Nối OA. Vì O là giao điểm của hai đường phân giác BO và CO nên O đường phân giác thứ ba cũng đi qua O. Suy ra OA là tia phân giác của góc A. Xét hai tam giác vuông : tam giác AOD và tam giác AOE có AO là cạnh chung , góc BOA = góc OAD
=> tam giác AEO = tam giác ADO (ch.gn) => OD = OE
1:
ΔDEF=ΔMNP
=>DE=MN; EF=NP; DF=MP
EF+FD=10; NP-MP=2; DE=3
=>MN=3cm; EF-DF=2 và EF+FD=10
=>EF=(10+2)/2=6cm và DF=6-2=4cm
EF=NP=6cm; DF=MP=4cm
2:
a: ΔABC=ΔNMP
b: ΔABC=ΔPNM
Bài 1
Do ∆DEF = ∆MNP
⇒ DE = MN; DF = MP; EF = NP
Do NP - MP = 2 (cm)
⇒ EF - FD = 2 (cm)
Lại có
EF + FD = 10 (cm)
⇒ EF = (10 + 2) : 2 = 6 (cm)
⇒ FD = 10 - 6 = 4 (cm)
Vậy độ dài các cạnh của mỗi tam giác là:
EF = NP = 6 cm
FD = MP = 4 cm
DE = MN = 3 cm
Đề sai nha bạn