- Tìm x\(\in\)Z để 4x2 - 6x - 16 \(⋮\) x - 3
- Tìm a, b, c sao cho ax3 + bx2 + c \(⋮\) x - 2; chia cho x2 +1 thì dư x + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Yêu cầu đề bài có vẻ không rõ ràng lắm, bạn viết lại được không?
a, n \(\in\) Z sao cho (2n - 3) \(⋮\) (n+1)
2n + 2 - 5 ⋮ n + 1
2(n+1) - 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -6; -2; 0; 4}
Ý b đề ko rõ ràng em nhé
Chọn A.
∫ 6 x + 1 2 d x = ∫ 36 x 2 + 12 x + 1 d x = 12 x 3 + 6 x 2 + x + C nên a = 12; b = 6; c = 1
Thay F(-1) = 20. d = 27
Ta có: a + b + c + d = 46.
a: Để P>-1 thì P+1>0
=>\(\dfrac{1-x^2+x}{x}>0\)
=>\(\dfrac{x^2-x-1}{x}< 0\)
TH1: x^2-x-1>0 và x<0
=>\(x< \dfrac{1-\sqrt{5}}{2}\)
TH2: x^2-x-1<0 và x>0
=>\(\left\{{}\begin{matrix}\dfrac{1-\sqrt{5}}{2}< x< \dfrac{1+\sqrt{5}}{2}\\x>0\end{matrix}\right.\Leftrightarrow0< x< \dfrac{1+\sqrt{5}}{2}\)
b: Để P là số nguyên thì 1-x^2 chia hết cho x
=>1 chia hết cho x
=>\(x\in\left\{1;-1\right\}\)
c: Để P=-3/2 thì \(\dfrac{1-x^2}{x}=\dfrac{-3}{2}\)
=>\(2-2x^2=-3x\)
=>-2x^2+2+3x=0
=>2x^2-3x-2=0
=>2x^2-4x+x-2=0
=>(x-2)(2x+1)=0
=>x=2 hoặc x=-1/2
đơn giản