Tìm x biết: (2x2 - 3)\(\left(3x^2-\dfrac{1}{0,12}\right)\)(x2 + 1) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy x2 + 1 \(\ge\)1 > 0 \(\forall\)x
=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2=3\\3x^2=\frac{1}{0,12}\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=\frac{3}{2}\\x^2=\frac{1}{0,36}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{3}{2}}\\x=\pm\frac{1}{0,6}\end{cases}}\)
Vậy \(x\in\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}};-\frac{1}{0,6};\frac{1}{0,6}\right\}\)là giá trị cần tìm
\(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
Nhận thấy rằng x2 + 1 ≥ 1 > 0 ∀ x
=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\)
+) 2x2 - 3 = 0
<=> 2x2 = 3
<=> x2 = 3/2
<=> x = \(\pm\sqrt{\frac{3}{2}}\)
+) 3x2 - 1/0,12 = 0
<=> 3x2 - 25/3 = 0
<=> 3x2 = 25/3
<=> x2 = 25/9
<=> x = \(\pm\frac{5}{3}\)
Vậy S = { \(\pm\frac{5}{3}\); \(\pm\sqrt{\frac{3}{2}}\))
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
a)TH1: \(2x-3>0;3x+2>0\)
\(=>2x-3-3x-2=0\\ =>-x-5=0\\ =>-x=5=>x=-5\)
TH2: \(2x-3< 0;3x+2< 0\)
\(=>-2x+3+3x+2=0\\ =>x+5=0\\ =>x=-5\)
Cả 2 TH ra \(x=-5=>x=-5\)
b)TH1 \(\dfrac{1}{2}x>0\)
\(=>\dfrac{1}{2}x=3-2x\\ =>3-2x-\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x-\dfrac{1}{2}x=3\\ =>\dfrac{3}{2}x=3\\ =>x=2\)
TH2 \(\dfrac{1}{2}x< 0\)
\(=>-\dfrac{1}{2}x=3-2x\\ =>3-2x+\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x+\dfrac{1}{2}x=3\\ =>\dfrac{5}{2}x=3\\ =>x=\dfrac{6}{5}\)
\(=>x=2;\dfrac{6}{5}\)
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8
\(\left(2x^2-3\right)\left(3x^2-\dfrac{1}{0,12}\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x^2-3=0\\3x^2-\dfrac{1}{0,12}=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x^2=3\\3x^2=\dfrac{1}{0,12}\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x^2=3\Rightarrow x^2=1,5\\3x^2=\dfrac{1}{0,12}\Rightarrow x^2=\dfrac{25}{9}\\x^2=-1\Rightarrow x\in\varnothing\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{1,5}\\x=\pm\dfrac{5}{3}\end{matrix}\right.\)
Cảm ơn bạn