K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Bạn tự phân tích đa thức thành nhân tử nhé! 

\(1.\)

\(2x^3+x+3=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)\left(2x^2-2x+3\right)=0\)  \(\left(1\right)\)

Vì  \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\)  với mọi  \(x\in R\)

nên từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x+1=0\)  \(\Leftrightarrow\)  \(x=-1\)

11 tháng 4 2016

1)2x^3+x+3=0=>

9 tháng 11 2021

\(ĐK:-5\le x\le3\)

Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:

\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm pt là ...

26 tháng 12 2015

x = -(111774096*i-41190385)/129759056;

x = -(69261717*i+47884985)/85790495;

x = -(8687406*i-24825665)/33515385;

x = (8687406*i+24825665)/33515385

x = (69261717*i-47884985)/85790495

x = (111774096*i+41190385)/129759056

 

26 tháng 12 2015

x6-x5+x4-x3+x2-x+1/2=0

=>x5(x-1)+x3(x-1)+x(x-1)+1/2=0

=>(x5+x3+x)(x-1)+1/2=0

thông cảm,mình mới lớp 7

NV
26 tháng 5 2019

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\frac{x-2}{x+1}=a\\\frac{x+2}{x-1}=b\end{matrix}\right.\) pt trở thành:

\(5a^2-44b^2+12ab=0\) \(\Leftrightarrow\left(a-2b\right)\left(5a+22b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\5a=-22b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x-2}{x+1}=\frac{2x+4}{x-1}\\\frac{5x+10}{x-1}=\frac{-22x-44}{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-2\right)-\left(2x-4\right)\left(x+1\right)=0\\\left(5x+10\right)\left(x-1\right)+\left(22x+44\right)\left(x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

16 tháng 6 2017

\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)

\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)

Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

16 tháng 6 2017

đex ~ vừa thấy trên face lướt qua luôn