cho A=5+ 5^2 +5^3 +.....+5^75
tìm số tự nhiên n biết
4A+5 =5^n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5+52+53+...+575
=> 5A=52+53+...+576
=> 5A-A=(52+53+...+576)-(5+52+...+575)
=> 4A=576-5
Ta có : .4.4A+5=5n+3
=> 4.(576-5):4+5=5n+3
=> 576-5+5=5n+3
=> 576=5n+3
=> 5n=576-3
Bài 1 :
A = 5 + 52 + 53 + .... + 575
A x 5 = 52 + 53 + 54 + ..... + 576
A x 5 - A = ( 52 + 53 + 54 + .... + 576 ) - ( 5 + 52 + 53 + ..... + 575 )
A x 4 = 5 + 576
A = ( 5 + 576 ) : 4
A = 5 : 4 + 576 : 4
A = 1,25 + 576 : 4
Bài 2 :
4A + 5 = 5n + 3
4A + 5 - 3 = 5n
4A + 2 = 5n
\(\Rightarrow n\)có vô số giá trị
A = 5+52+53+.....+52011
A5 = (5+52+53+.....+52011).5
A5 = 52+53+54+.....+52012
A5 - A = (52+53+54+.....+52012)-(5+52+53+.....+52011)
A4 = 52+53+54+.....+52012 - 5-52-53-.....-52011
A4 = 52012 -5
A = (52012 -5) :4
Mà 4A + 5 = 5N => 4 (52012 -5) :4 + 5 = 5N => 52012 -5 + 5 = 5N => 52012 = 5N => N = 52011
\(A=5+5^2+5^3+...+5^{2011}\)
\(5A=\left(5+5^2+5^3+...+5^{2011}\right)\times5\)
\(5A=5^2+5^3+5^4+...+5^{2012}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{2012}\right)-\left(5+5^2+5^3+....+5^{2011}\right)\)
\(4A=\left(5^2+5^3+5^4+....+5^{2011}\right)-\left(5^2+5^3+5^4+....+5^{2011}\right)+\left(5^{2012}-5\right)\)
\(4A=0+\left(5^{2012}-5\right)=5^{2012}-5\)
\(\Rightarrow4A+5=5^{2012}\)hay \(5^n=5^{2012}\)
\(\Rightarrow n=2012\)
\(A=5^{2016}-5\)
A=132901150760150400933474662701093632444139156230245797983451739952061292318821219082408733380123716446923280138816148691348332250549138432694744733040207471635460062291111714453852983450163412839478432674285466723489853471331344961752024356711039744998722729088056022242066820496791634992123859739046602165056020296822649485842368328334914700117232737216924944154499322138498785527017914889599336202481672782191035035874706832781528727280801652013578429369125463744179027114136759472454584397133928400078670849997607302892223027036473470262496682733564340461161715868386687990733274505753924648948618963125139438987342574828670180634045054186337242659614976824201571903960747675319866959366451316077662320815346287052220792434027927921187356889656584951394657674940726699259495071241216158196484638282891605536718919121672173792307092698308883330916383232492806602360867087932017350554747339691684066271395957046064307027329280820284160155505133882385577240294382888635735834661135764449778633852155557799373087364612366519453980045038199609836307800276035054500661361991243746011829792746699524810528841093775444529181087096473054405737871791062821700667456513545082416389778381211311121521088261300886212326120546085043586116353533714697985212811857529689920199233762425541566473083922473532034610100101045817053433299648552633995654263623546743263019492984489331442211901279648600393556989729404449462890620
b, n = 106320920608120320746779730160874905955311324984196638386761391961649033855056975265926986704098973157538624111052918953078665800439310746155795786432165977308368049832889371563082386760130730271582746139428373378791882777065075969401619485368831795998978183270444817793653456397433307993699087791237281732044816237458119588673894662667931760093786189773539955323599457710799028421614331911679468961985338225752828028699765466225222981824641321610862743495300370995343221691309407577963667517707142720062936679998085842313778421629178776209997346186851472368929372694709350392586619604603139719158895170500111551189874059862936144507236043349069794127691981459361257523168598140255893567493161052862129856652277029641776633947222342336949885511725267961115726139952581359407596056992972926557187710626313284429375135297337739033845674158647106664733106585994245281888693670345613880443797871753347253017116765636851445621863424656227328124404107105908461792235506310908588667728908611559822907081724446239498469891689893215563184036030559687869046240220828043600529089592994996809463834197359619848423072875020355623344869677178443524590297432850257360533965210836065933111822704969048897216870609040708969860896436868034868893082826971758388170249486023751936159387009940433253178467137978825627688080080836653642746639718842107196523410898837394610415594387591465153769521023718880314845591783523559570312500
Ta dùng 5A-A ta sẽ ra 4A
thì tớ nói đáp án luôn cho nhanh nhưng bạn phải tự làm
ĐÁP ÁN: 4A= 5^2019-1
mà 5^n = 4A+1
=>5^n = 5^2019-1+1
=>5^n = 5^2019
Ta có:
A=5+52+53+...+5100
5A=52+53+54+...+5101
4A=5A-A=(52+53+54+...+5101)-(5+52+53+...+5100)
4A=5101-5
4A+5=5101-5+5
4A+5=5101
=>n=101.
A = 5+52+53+.........+52011
5A = 52+53+54+.........+52011+52012
Lấy 5A - A
Ta có: A= 5+52+53+...+599 (1)
=> 5A= 52+53+54+...+5100 (2)
Lấy (2)-(1) ta có:
5A-A= ( 52+53+54+...5100) - (5+52+53+...+599)
4A=5100-5
Vì 4A+5=5n
Thay vào ta có: 5100-5+5=5n
5100=5n
=> n=100
a/ s=A+....A là ở câu (b) à
tính B=7+10+13 ...2014
số số hang =(2014-7)/3+2007/3+1=670
B=(7+2014)/2*n=2007*335=....
S=A+B
tính A
5A=5^2+5^3+5^4+...+5^100
5A-A=4A=5^100-5
A=(5^100-5)/4
S=(5^100-5)/4+2007.335
*tìm n
5^n=4A+5=5^100
n=100
A = 1 + 5 + 52 + 53 + ....+ 52017
A . 5 = 5 + 52 + 53 + 54 + .... + 52018
A . 5 - A = ( 5 + 52 + 53 + 54 + .... + 52018 ) - ( 1 + 5 + 52 + 53 + ......+ 52017 )
A . 4 = 52018 - 1
Ta có : 52018 - 1 + 1 = 5n + 1
52018 = 5n+1
Suy ra : 2018 = n + 1
2018 - 1 = n
2017 = n
chuẩn mình cũng làm thế
đó là đề thi khảo sát giữa học kì 1
Ta có :
\(A=5+5^2+..........+5^{75}\)
\(\Leftrightarrow5A=5^2+5^3+.........+5^{75}+5^{76}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+.........+5^{76}\right)-\left(5+5^2+..........+5^{75}\right)\)
\(\Leftrightarrow4A=5^{76}-5\)
\(\Leftrightarrow4A+5=5^{76}\)
Mà \(4A+5=5^n+3\)
\(\Leftrightarrow5^{76}=5^n+3\)
hình như sai đề, hoặc là \(n\in\varnothing\)