Tìm x biết :
(2x+4) . (x-3) > 0
x+5/x-1 < 0
(x-2) . (x+5) <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
a) (2x+4) . (x-3) > 0
\(\Rightarrow\orbr{\begin{cases}2x+4< 0;x-3< 0\\2x+4>0;x-3>0\end{cases}}\Rightarrow\orbr{\begin{cases}2x< -4;x< 3\\2x>-4;x>3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< -2;x< 3\\x>-2;x>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< -2\\x>3\end{cases}}\)thì (2x+4).(x-3) > 0
b) \(\frac{x+5}{x-1}< 0\)
\(\Rightarrow\orbr{\begin{cases}x+5< 0;x-1>0\\x+5>0;x-1< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x< -5;x>1\\x>-5;x< 1\end{cases}}\Rightarrow-5< x< 1\)thì \(\frac{x+5}{x-1}< 0\)
c)\(\left(x-2\right)\left(x+5\right)< 0\)
\(\Rightarrow\orbr{\begin{cases}x-2< 0;x+5>0\\x-2>0;x+5< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x< 2;x>-5\\x>2;x< -5\end{cases}}\Rightarrow-5< x< 2\)thì (x-2).(x+5) <0
Giải:
a) \(\left(2x+4\right)\left(x-3\right)>0\)
* TH1:
\(\left\{{}\begin{matrix}2x+4>0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>3\end{matrix}\right.\Leftrightarrow x>3\)
* TH2:
\(\left\{{}\begin{matrix}2x+4< 0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< 3\end{matrix}\right.\Leftrightarrow x< 2\)
Vậy \(x>3\) hoặc \(x< 2\).
b) \(\dfrac{x+5}{x-1}< 0\)
* TH1:
\(\left\{{}\begin{matrix}x+5>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-5\\x< 1\end{matrix}\right.\Leftrightarrow-5< x< 1\)
\(\Leftrightarrow x\in\left\{-4;-3;-2;-1;0\right\}\)
* TH2:
\(\left\{{}\begin{matrix}x+5< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -5\\x>1\end{matrix}\right.\Leftrightarrow-5>x>1\)
\(\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}\).
c) \(\left(x-2\right)\left(x+5\right)< 0\)
* TH1:
\(\left\{{}\begin{matrix}x-2>0\\x+5< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -5\end{matrix}\right.\Leftrightarrow2< x< -5\)
\(\Leftrightarrow x\in\left\{\varnothing\right\}\)
* TH2:
\(\left\{{}\begin{matrix}x-2< 0\\x+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>-5\end{matrix}\right.\Leftrightarrow2>x>-5\)
\(\Leftrightarrow x\in\left\{-4;-3;-2;-1;0;1\right\}\)
Vậy \(x\in\left\{-4;-3;-2;-1;0;1\right\}\).
Chúc bạn học tốt!