Giải phương trình sau : \(3x^2+4x+10=2\sqrt{14x^2-7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{2x^2-1}=t\) ta có: \(x^2+4x+4=-t^2+2t\sqrt{7}-7\Leftrightarrow\left(x+2\right)^2=-\left(t-\sqrt{7}\right)^2\\ \Rightarrow\left\{{}\begin{matrix}x+2=0\\t-\sqrt{7}=0\end{matrix}\right.\Rightarrow x=-2\)
Bài này dùng bất đẳng thức cho nhanh bạn ơi
mình gửi bài này từ hồi học kì 1 lớp 9, giờ lớp 10 lại có người trả lời :v
a. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x}=a>0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+b=\sqrt{3a^2-b^2}\)
\(\Leftrightarrow\left(a+b\right)^2=3a^2-b^2\)
\(\Leftrightarrow a^2-ab-b^2=0\Leftrightarrow\left(a-\dfrac{1+\sqrt{5}}{2}b\right)\left(a+\dfrac{\sqrt{5}-1}{2}b\right)=0\)
\(\Leftrightarrow a=\dfrac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\dfrac{1+\sqrt{5}}{2}\sqrt{2x-1}\)
\(\Leftrightarrow x^2+2x=\dfrac{3+\sqrt{5}}{2}\left(2x-1\right)\)
\(\Leftrightarrow x^2-\left(\sqrt{5}+1\right)x+\dfrac{3+\sqrt{5}}{2}=0\)
\(\Leftrightarrow\left(x-\dfrac{\sqrt{5}+1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)
b. ĐKXĐ: \(x\ge5\)
\(\Leftrightarrow\sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}\)
\(\Leftrightarrow5x^2+14x+9=x^2-x-20+25\left(x+1\right)+10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)
\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-4x-5}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4x-5}=\sqrt{x+4}\\2\sqrt{x^2-4x-5}=3\sqrt{x+4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x+4\\4\left(x^2-4x-5\right)=9\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: \(\left|x\right|\ge\frac{1}{2}\)
\(3x^2+4x+10=2\sqrt{14x^2-7}\)
<=> \(2x^2-1-2\sqrt{7\left(2x^2-1\right)}+7+\left(x^2+4x+4\right)=0\)
<=> \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2+\left(x+2\right)^2=0\)
Nhận thấy: \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2\ge0\) \(\forall x\)t/m ĐKXĐ
\(\left(x+2\right)^2\ge0\) \(\forall x\)
suy ra: \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2+\left(x+2\right)^2\ge0\)
Từ đó, dấu "=" phải xảy ra
Khi đó: \(\hept{\begin{cases}\sqrt{2x^2-1}-\sqrt{7}=0\\x+2=0\end{cases}}\) <=> \(x=-2\) (t/m)
Vậy...
\(3x^2+4x+10=2\sqrt{14x^2-7}\)
\(\Leftrightarrow2\sqrt{14x^2-7}=3x^2+4x+10\)
\(\Leftrightarrow\left(2\sqrt{14x^2-7}\right)^2=\left(3x^2+4x+10\right)^2\)
\(\Leftrightarrow56x^2-28=9x^4+76x^2+10+24x^3+80x\)\(\Leftrightarrow56x^2-28-9x^4-76x^2-100-24x^3-80x=0\)\(\Leftrightarrow-20x^2-128-9x^4-24x^3-80x=0\)
\(\Leftrightarrow-9x^4-18x^3-6x^3-12x^2-8x^2-16x-64x-128=0\)\(\Leftrightarrow-9x^3\cdot\left(x+2\right)-6x^2\cdot\left(x+2\right)-8x\cdot\left(x+2\right)-64\left(x+2\right)=0\)\(\Leftrightarrow-\left(x+2\right)\cdot\left(9x^3+18x^2+12x^2-24x+32x+64\right)=0\)\(\Leftrightarrow-\left(x+2\right)\cdot\left(9x^2\left(x+2\right)-12x\cdot\left(x+2\right)+32\left(x+2\right)\right)=0\)
\(\Leftrightarrow-\left(x+2\right)^2\cdot\left(9x^2-12x+32\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-\left(x+2\right)^2=0\\9x^2-12x+32=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x\notin R\end{matrix}\right.\)
\(\Leftrightarrow x=-2\)