K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Áp dụng BĐT AM - GM:

\(a+b+c\ge3\sqrt[3]{abc}\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

2 tháng 10 2018

Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

Ta có:

\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)

Tương tự ta có:

\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)

\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)

\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)

Dấu bằng xảy ra khi a=b=c=1

2 tháng 10 2018

mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra

28 tháng 11 2019

Áp dụng BĐT Cauchy- schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)

\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}\)\(+\frac{1}{ab+bc+ca}\)

\(+\frac{2007}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{6030}{\left(a+b+c\right)^2}\ge670\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

4 tháng 5 2016

Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\),rồi thya vào dễ rồi!

14 tháng 3 2016

Sử dụng bất đẳng thức  \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)  với ba số  \(a,b,c\)  và ba số  dương \(x,y,z\)  bất kỳ với chú ý rằng  \(a^2b^2c^2=1\), ta có:

 \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{b^2c^2}{a\left(b+c\right)}+\frac{c^2a^2}{b\left(c+a\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)  \(\left(1\right)\)

Đặt  \(x=ab;\)  \(y=bc;\)  và  \(z=ca\)  thì  \(xyz=1\)  \(\left(2\right)\) với  \(x;\)\(y;\) và  \(z\)  \(>0\)  

Khi đó áp dụng BĐT Cauchy cho bộ ba số nguyên dương \(x;\)\(y;\) và  \(z\), ta được:

\(x+y+z\ge3\sqrt[3]{xyz}\)  \(\Leftrightarrow\)  \(x+y+z\ge3\)  (do  \(\left(2\right)\)), tức  \(ab+bc+ca\ge3\)  \(\left(3\right)\)

Từ  \(\left(1\right);\)  \(\left(3\right)\) ta suy ra   \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)  \(\left(đpcm\right)\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(a=b=c=1\)

14 tháng 3 2016

thông điệp nhỏ :

hãy tích nếu như ko muốn tích 

ai tích mình tích lại nh nha 

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân