CMR: Với mọi a,b thuộc R thì:
a, a2-4ab+b2 > hoặc = 0
b, -2a2+a-1<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!
\(M=\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a^3-b^3\right)-\left(a^3+b^3\right)\)
\(=-2b^3\)
Lại có : \(b< 0\Leftrightarrow-2b^3>0\)
\(\Leftrightarrow M>0\left(đpcm\right)\)
Ta có: \(a^4+a^3b+ab^3+b^4\)
\(=a^3\left(a+b\right)+b^3\left(a+b\right)\)
\(=\left(a+b\right)\left(a^3+b^3\right)\)
\(=\left(a+b\right)^2\cdot\left(a^2-ab+b^2\right)\)
Ta có: \(a^2-ab+b^2\)
\(=a^2-2\cdot a\cdot\frac{1}{2}b+\frac{1}{4}b^2+\frac{3}{4}b^2\)
\(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)
Ta có: \(\left(a-\frac{1}{2}b\right)^2\ge0\forall a,b\)
\(\frac{3}{4}b^2\ge0\forall b\)
Do đó: \(\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a,b\)
\(\Leftrightarrow a^2-ab+b^2\ge0\forall a,b\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b\right)^2\ge0\forall a,b\)(Vì \(\left(a+b\right)^2\ge0\forall a,b\))
hay \(a^4+a^3b+ab^3+b^4\ge0\forall a,b\)(đpcm)
\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)
a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)
= a2 - 2a - a + 2 + a2 + 4a - 3a - 12 - 2a2 - 5a + 34
= (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)
= -7a + 24
=> VT = VP
=> đpcm
b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)
= (a3 - b3) - (a3 + b3)
= a3 - b3 - a3 - b3
= -2b3
=> VT = VP
=> Đpcm
Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)
a:Sửa đề: \(a^2-4ab+4b^2\)
\(=a^2-2\cdot a\cdot2b+4b^2\)
\(=\left(a-2b\right)^2\ge0\)(luôn đúng)
b: \(-2a^2+a-1\)
\(=-2\left(a^2-\dfrac{1}{2}a+\dfrac{1}{2}\right)\)
\(=-2\left(a^2-2\cdot a\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)
\(=-2\left(a-\dfrac{1}{2}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\forall x\)