a, ( x - 2 )( x + \(\dfrac{4}{11}\) ) > 0
b, x2 - x < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
=>(x+3)(x+4)>=0
=>x+3>=0 hoặc x+4<=0
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
=>x-2>0 hoặc x-1<=0
=>x>2 hoặc x<=1
d: \(\dfrac{x+3}{2-x}>=0\)
=>\(\dfrac{x+3}{x-2}< =0\)
=>x+3>=0 và x-2<0
=>-3<=x<2
Ta có : (x - 3)(x - 2) < 0
Nên sảy ra 2 trường hợp : D
Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)
Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
Vậy 2 < x < 3
a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)
b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)
c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)
d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)
e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
a) \(\dfrac{3}{4}x-1>\dfrac{1}{2}x+5\)
\(\Rightarrow\dfrac{3}{4}x-\dfrac{1}{2}x>1+5\)
\(\Rightarrow\dfrac{1}{4}x>6\)
\(\Rightarrow x>24\)
b) Đơn giản.
c) \(\left(x+1\right)\left(x-2\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}x+1>0;x-2>0\\x+1< 0;x-2< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>-1;x>2\\x< -1;x< 2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>2\\x< -1\end{matrix}\right.\)
Vậy ....
a: 5x+2>3x-1
=>5x-3x>-1-2
=>2x>-3
hay x>-3/2
b: \(\dfrac{3}{4}x-\dfrac{1}{2}>\dfrac{1}{2}x+\dfrac{3}{4}\)
=>3/4x-1/2x>3/4+1/2
=>1/2x>5/4
hay x>5/4:1/2=5/2
c: (x-2)(x-3)>0
=>x-3>0 hoặc x-2<0
=>x>3 hoặc x<2
d: (2x+4)(x-5)<0
=>(x+2)(x-5)<0
=>-2<x<5
easy làm câu b vs c trước nha
b) \(\left(x-5\right)\left(2x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5>0\\2x+4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5< 0\\2x+4< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>5\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 5\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -2\end{matrix}\right.\)
Vậy......
c) \(\left(x+3\right)\left(3x-6\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\3x-6< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\3x-6>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3< x< 2\\x\in\varnothing\end{matrix}\right.\)
Vậy.......
\(\left(x-2\right)\left(x+\dfrac{4}{11}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\Rightarrow x>2\\x+\dfrac{4}{11}>0\Rightarrow x>-\dfrac{4}{11}\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\Rightarrow x< 2\\x+\dfrac{4}{11}< 0\Rightarrow x< -\dfrac{4}{11}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x< 2\) hoặc \(x>-\dfrac{4}{11}\)
\(x^2-x< 0\)
\(\Rightarrow x\left(x-1\right)< 0\)
Với mọi giá trị \(x\in R\) thì \(x-1< x\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-1< 0\Rightarrow x< -1\end{matrix}\right.\)
Vậy \(x>0\) hoặc \(x< -1\)
Lập đàn cầu thánh nhân :^)