K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

S = (-3)0 + (-3)1 + (-3)2 + ... + (-3)2015

=> -3S = (-3)1 + (-3)2 + ... + (-3)2016

=> -4S = (-3)2016 - 1

=> S = \(\dfrac{3^{2016}+1}{4}\)

NV
15 tháng 11 2019

\(I=\int\limits^1_0\frac{x^3+2x^2+3}{x+2}dx=\int\limits^1_0\left(x^2+\frac{3}{x+2}\right)dx=\left(\frac{x^3}{3}+3ln\left|x+2\right|\right)|^1_0\)

\(=\left(\frac{1}{3}+3ln3\right)-3ln2=\frac{1}{3}+3ln\frac{3}{2}\)

\(\Rightarrow a=b=3\Rightarrow S=18\)

Bài 2: 

Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)

\(\Leftrightarrow16x+40=90+30\)

\(\Leftrightarrow16x=80\)

hay x=5

5 tháng 10 2021

Bài 1 :

[( 35 - 5 ) : 3 ]3 + 3

= [30 : 3]3 + 3

= 103 + 3

= 1000 + 3

= 1003

Đây nha bạn!!!

Chúc bạn học tốt!!!hihi

9 tháng 2 2020

\(\text{Ta có:}\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)

còn lại ko tính đc bạn ktra lại đề

9 tháng 2 2020

mk nhầm , chiều mk lm tiếp

2 tháng 3 2020

Ta có:\(\text{ -1 - 2 - 3 - 4 - 5 - ... - 1999 - 2000 - 2001 - 2002}\)

\(\text{= -(1 + 2 + 3 + 4 + 5 + 6 + ... + 2001 + 2002) }\) 

\(=-8020012\)

{Số số hạng của dãy trong ngoặc là:\(\text{ (2002 - 1) : 1 + 1 = 2002}\) 

\(\Rightarrow\)Tổng là: \(\left(1+2002\right)\cdot2002:2=8020012\)}

26 tháng 3 2020

a. \(\left[\left(-2\right)^5.2014-4^2.2015\right]-\left(-2015^0+3^2-2^3\right)\)

\(=-64448-32240+1-9+8=-96688\)

27 tháng 3 2020

Tớ lm lại nhé:

SBC = 9-1/2-1/3-1/4-...-1/10

=1+1+...+1(9 số 1) -1/2-1/3-1/4-1/5-...-1/10.

=(1-1/2)+(1-1/3)+...+(1-1/10)

=1/2+2/3+...+9/10= SC

=> phép chia có thương là 1(vì SBC=SC)

23 tháng 7 2015

216

6561

7

2015

21 tháng 5 2016

S = (-3)+ (-3)+ (-3)+ ... +  (-3)2015

=> 3S = (-3)+ (-3)+ (-3)+ ... +  (-3)2016

=> 3S + S = [(-3)+ (-3)+ ... +  (-3)2016] + [(-3)+ (-3)+ ... +  (-3)2015]

=> 4S = (-3)2016 + (-3)0

=> S = \(\frac{\left(-3\right)^{2016}+\left(-3\right)^0}{4}\)