D=5\(^2\)+ 5\(^3\)+ 5\(^4\)+5\(^5\)+....5\(^{16}\) chứng tỏ D chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
cho A = 6+16+162+163+164+165+166+167+168+169. Chứng tỏ rằng A vừa chia hết cho 2, vừa chia hết cho 5
ví 6+16= 22 chia hết cho 2 nên tổng đó chia hết cho 2 (ghi lại tổng trên)
nên A chia hết cho 2
vì 6+ 16+162+163+164=69910 chia hết cho 5 nên tổng đó chia hết cho 5 ( ghi lại tổng : 6+16+...+169)
nên A chia hết cho 5
vậy A vừa chia hết cho 2, vừa chia hết cho 5
Vì 6+16= 22 chia hết cho 2 nên tổng đó chia hết cho 2 (ghi lại tổng trên)
Nên A chia hết cho 2
Vì 6+ 16+162+163+164=69910 chia hết cho 5 nên tổng đó chia hết cho 5 ( ghi lại tổng : 6+16+...+169)
Nên A chia hết cho 5
Vậy A vừa chia hết cho 2, vừa chia hết cho 5
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)