K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Xét: P2 = \(\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{10ab-6ab}{10ab+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\)

=> P = \(\dfrac{1}{2}\)

7 tháng 2 2022

Cko êm quỷn vở

6 tháng 4 2017

Tìm giá trị của phân thức khi biến thỏa mãn điều kiện cho trước | Toán lớp 8

5 tháng 5 2016

Xét \(3a^2+3b^2=10ab\Rightarrow a^2+b^2=\frac{10ab}{3}\)

hay: \(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2+2ab=\frac{10}{3}ab+2ab\Rightarrow\left(a+b\right)^2=\frac{16}{3}ab\) (1)

\(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2-2ab=\frac{10}{3}ab-2ab\Rightarrow\left(a-b\right)^2=\frac{4}{3}ab\) (2)

Ta có \(p=\frac{a+b}{a-b}\Rightarrow p^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{16}{3}ab}{\frac{4}{3}ab}=4\) Vậy \(p=2\) hoặc \(p=-2\)

6 tháng 5 2016

ta có 3a^2 +3b^2=10ab

<=> 3a(a-3b) - b(a-3b)=0

<=> (3a-b)(a-3b)=0

=> a=3b ; 3a=b (loại vì a>b>0)

thay a=3b

ta có P=3b-b/3a+b

           = 2b/4b

           =1/2

6 tháng 11 2018

Bạn tham khảo bài làm của mình dưới đây nhé :

Câu hỏi của phạm anh thơ - Toán lớp 8 - Học toán với OnlineMath

6 tháng 11 2018

\(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2+3b^2-ab-9ab=0\)

\(\Leftrightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)

\(a>b>0\Leftrightarrow3a>b\Leftrightarrow3a-b>0\)

\(\Leftrightarrow a=3b\)

\(M=\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

19 tháng 6 2017

Ta có:3a2-10ab+3b2=0 nên 4a-8ab+4b2-a2-b2-2ab =0;

=> (2a-2b)2-(a+2ab+b2)  =0  bạn đóng ngoặc trước dấu trừ nên phải đổi dấu nhé;

=>(2a-2b)2=(a+b)2 hai phân số bằng nhau có cùng số mũ nên cơ số phải bằng nhau :

=>2(a-b)=a+b (1);

Thay (1) vào biểu thức trên ta có:\(\frac{a-b}{2\left(a-b\right)}=\frac{1}{2}\)k nha bạn

6 tháng 11 2018

Đặt \(M=\frac{a-b}{a+b}\)

\(3a^2+3b^2=10ab\)

\(3a^2+3b^2-10ab=0\)

\(4a^2-a^2+4b^2-b^2-8ab-2ab=0\)

\(\left[\left(2a\right)^2-2\cdot2a\cdot2b+\left(2b\right)^2\right]-\left(a^2+2ab+b^2\right)=0\)

\(\left(2a-2b\right)^2-\left(a+b\right)^2=0\)

\(\left(2a-2b\right)^2=\left(a+b\right)^2\)

TH1: \(2a-2b=a+b\)

\(\Leftrightarrow2a-2b-a-b=0\)

\(\Leftrightarrow a-3b=0\)

\(\Leftrightarrow a=3b\)

Thay a = 3b vào M ta có :

\(M=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

TH2: \(2a-2b=-a-b\)

\(\Leftrightarrow2a-2b+a+b=0\)

\(\Leftrightarrow3a-b=0\)

\(\Leftrightarrow3a=b\)

Thay b = 3a vào M ta có :

\(M=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)

Vậy \(M\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)

P.s: Trịnh Hữu An thiếu t/h nha bạn