Chứng minh không có số hữu tỉ nào mà x^2=3, x^2=4.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TM
1
NM
2
VN
5 tháng 9 2017
ta có căn bậc 2 =1,4142......
mà x thuộc số hữu tỉ => ko số nào thỏa mãn x
NH
0
LD
20 tháng 7 2017
giả sử tồn tại số hữu tỉ có bình phương bằng 2
coi số đó là a/b ( a;b thuộc N*,(a;b)= 1)
ta có (a/b)^2 = 2 => a^2 = 2 b^2 => a^2 chia hết cho 2 => a^2 chia hết cho 4 => b^2 chia hết cho 2 => b chia hết cho 2 => UC(a;b)={1;2}
=> trái vs giả sử => ko tồn tại hữu tỉ có bình phương bằng 2
CM tương tự vs 3 và 6 nhé
HH
0
ND
1
29 tháng 6 2016
Ta có: \(\left(x-y\right)^2\ge0\forall x;y\)\(\Rightarrow2xy\le x^2+y^2\Rightarrow4xy\le x^2+y^2+2xy=\left(x+y\right)^2=4\)
\(\Rightarrow xy\le1\)đpcm
Dấu "=" khi x = y = 1.