K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Ta có hình vẽ sau:

Ôn tập cuối năm phần hình học

Lấy điểm \(R\in AB|\angle BCR=\angle ABN\). $CR$ cắt $BM$ tại $K$ và $BN$ tại $E$

Khi đó:

\(\left\{\begin{matrix} \angle BCR=\angle ABN\\ \angle RBC=\angle NAB=90^0\end{matrix}\right.\Rightarrow \triangle ABN\sim \triangle BCR\)

\(\Rightarrow 1=\frac{AB}{BC}=\frac{AN}{BR}\Rightarrow AN=BR(1)\)

Từ hai tam giác đồng dạng ta cũng suy ra \(\angle ANE=\angle ANB=\angle CRB=\angle ERB\)

Xét tứ giác $AREK$ có \(\angle A+\angle ARE+\angle ANE+\angle NER=360^0\)

\(\Leftrightarrow 90^0+\angle ARE+\angle ERB+\angle NER=360^0\)

\(\Leftrightarrow 90^0+180^0+\angle NER=360^0\Rightarrow \angle NER=90^0\rightarrow BE\perp RK\)

Tam giác $RBK$ có $BE$ vừa là đường cao vừa là đường phân giác nên $RBK$ là tam giác cân tại $B$

\(\Rightarrow BR=BK(2)\). Từ \((1),(2)\Rightarrow AN=BK\)

Tam giá $RBK$ cân \(\Rightarrow \angle BRK=\angle BKR=\angle MKC\)

\(\angle BRK=\angle KCM\) (so le trong) nên \(\angle MKC=\angle KCM\Rightarrow \triangle KMC\) cân tại $M$

\(\Rightarrow CM=MK\)

Do đó, \(AN+CM=BK+MK=BM\) (đpcm)

\(\)

31 tháng 8 2016

Trên tia đối của tia CD em lấy điểm J sao cho CJ = AI. Qua M vẽ đường thẳng song song với BI cắt BJ tại N 
Dễ cm tam giác vuông ABI = tam giác vuông CBJ => BI = BJ 
Mặt khác dễ cm BI _|_ BJ => MN _|_ BJ 
Và => MBJ = 900 - MBI => 900 - ABI = 900- CBJ = MJB => tam giác MBJ cân tại M => N là trung điểm của BJ 
Ta có MI >= BN = BJ/2 = BI/2 ( vì BIMN là hình thang vuông tại B và N) ( đpcm) 
Hay BI =< 2MI (đpcm)

DD
28 tháng 3 2021

Bạn tự vẽ hình nhé. 

a) Xét tam giác \(ABM\)và tam giác \(NBM\)có: 

\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)

\(MB\)cạnh chung

\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))

suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng) 

suy ra \(MB\)là tia phân giác góc \(AMN\).

b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong) 

và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị) 

mà \(\widehat{AMB}=\widehat{NMB}\)(theo a)) 

suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).

c) Vì \(\Delta ABM=\Delta NBM\)nên

+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).

+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).

suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).

mà \(NK//BM\)suy ra \(AN\perp NK\).

Trong tam giác vuông \(ANK\)\(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).

d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))

suy ra \(MN=\frac{1}{2}MC\).

Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).

Do đó \(\widehat{C}=30^o\).

Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).

25 tháng 12 2023

giúp với huhu

 

31 tháng 12 2023

a: Xét ΔBAM và ΔBNM có

BA=BN

\(\widehat{ABM}=\widehat{NBM}\)

BM chung

Do đó: ΔBAM=ΔBNM

b: Ta có: ΔBAM=ΔBNM

=>MA=MN

=>M nằm trên đường trung trực của AN(1)

ta có: BA=BN

=>B nằm trên đường trung trực của AN(2)

Từ (1) và (2) suy ra BM là đường trung trực của AN

=>BM\(\perp\)AN tại H và H là trung điểm của AN

vì H là trung điểm của AN

nên HA=HN

c: Ta có: CK\(\perp\)BM

HN\(\perp\)BM

Do đó: CK//HN

13 tháng 11 2021

tham khảo

Trên tia đối tia CD lấy điểm M sao cho CM = AK

Ta có: AK + CE = CM + CE = EM (*)

Xét ∆ ABK và ∆ CBM:

AB = CB (gt)

ˆA=ˆC=900

AK = CM (theo cách vẽ)

Do đó: ∆ ABK = ∆ CBM (c.g.c)

⇒ˆB1=ˆB4

(1)

ˆKBC=900–ˆB1

(2)

Trong tam giác CBM vuông tại C.

ˆM=900–ˆB4

(3)

Từ (1), (2) và (3) suy ra: ˆKBC=ˆM

(4)

ˆKBC=ˆB2+ˆB3

 mà  ˆB1=ˆB2

(gt)

ˆB1=ˆB4

(chứng minh trên)

Suy ra: ˆB2=ˆB4⇒ˆB2+ˆB3=ˆB3+ˆB4

hay ˆKBC=ˆEBM

(5)

Từ (4) và (5) suy ra: ˆEBM=ˆM

⇒ ∆ EBM cân tại E ⇒ EM = BE (**)

Từ (*) và (**) suy ra: AK + CE = BE