K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2023

x³ + 2x = 0

x(x² + 2) = 0

x = 0 hoặc x² + 2 = 0

*) x² + 2 = 0

x² = -2 (vô lí)

Vậy x = 0

--------------------

8x(x - 2017) - 2x + 4034) = 0

8x(x - 2017) - 2(x - 2017) = 0

(x - 2017)(8x - 2) = 0

x - 2017 = 0 hoặc 8x - 2 = 0

*) x - 2017 = 0

x = 2017

*) 8x - 2 = 0

8x = 2

x = 1/4

Vậy x = 1/4; x = 2017

1)x^3+2x=0

<=>x(x^2+2)=0

<=>x^2=-2(vô lý)

2)8x(x-2017)-2x+4034=0

<=>(x-2017)(8x-2)=0

<=>X=2017,x=1/4

 

 

 

14 tháng 12 2021

\(\Rightarrow x\left(x^2-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

29 tháng 10 2021

g) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

  \(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

  \(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

  \(\Rightarrow-2\left(2x-5\right)=0\Rightarrow x=\dfrac{5}{2}\)

i) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

  \(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

  \(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

  \(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\Rightarrow x\left(x+3\right)\left(x-2\right)=0\)

  \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

4 tháng 10 2021

\(x^3+3x^2+2x=0\)

\(\Leftrightarrow x\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

13 tháng 11 2021

\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`

`= 2x^2+3`

 

`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)

`= -x^3+(3x^2-x^2)+(-3x+2x)+2`

`= -x^3+2x^2-x+2`

`P(x)-Q(x)-R(x)=0`

`-> P(X)-Q(x)=R(x)`

`-> R(x)=P(x)-Q(x)`

`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`

`-> R(x)=2x^2+3+x^3-2x^2+x-2`

`= x^3+(2x^2-2x^2)+x+(3-2)`

`= x^3+x+1`

`@`\(\text{dn inactive.}\)

a: P(x)-Q(x)-R(x)=0

=>R(x)=P(x)-Q(x)

=2x^2+3+x^3-2x^2+x-2

=x^3+x+1

27 tháng 12 2019

18 tháng 1 2022

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)