K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 8 2017

Lời giải:

Theo tính chất của hàm căn bậc 2, hiển nhiên

\(C=\sqrt{-9x^2+6x+3}\geq 0\)

\(\Leftrightarrow C_{\min}=0\)

Dấu bằng xảy ra khi \(-9x^2+6x+3=0\Leftrightarrow x=-\frac{1}{3}\)

Lại có:

\(-9x^2+6x+3=-(3x-1)^2+4\leq 4\)

\(\Rightarrow \sqrt{-9x^2+6x+3}\leq \sqrt{4}=2\)

Do đó \(C_{\max}=4\). Dấu bằng xảy ra khi \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

2 tháng 8 2018

\(A=\left(x-3\right)^2+\left(x-11\right)^2\)

\(A=x^2-6x+9+x^2-22x+121\)

\(A=2x^2-28x+130\)

\(A=2\left(x^2-14x+49\right)+32\)

\(A=2\left(x-7\right)^2+32\ge32\)

Vậy GTNN của A là 32 khi x = 7

2 tháng 8 2018

\(A=19-6x-9x^2 \)

\(A=-\left(9x^2+6x+1\right)+20\)

\(A=-\left(3x+1\right)^2+20\le20\)

Vậy GTLN của A là 20 khi x = \(-\frac{1}{3}\)

27 tháng 9 2023

\(F=\sqrt{-3x^2-6x+2}\left(Đk:-1-\sqrt{\dfrac{5}{3}}\le x\le\sqrt{\dfrac{5}{3}}-1\right)\)

\(=\sqrt{-\left(3x^2+6x+3\right)+5}\)

\(=\sqrt{-3\left(x+1\right)^2+5}\)

Vì \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow F\le\sqrt{5}\)

\(MaxF=\sqrt{5}\Leftrightarrow x=-1\)

27 tháng 9 2023

Bài này có thể tìm Min không anh?

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

27 tháng 8 2015

Ta có \(9x^2-6x+1=\left(3x-1\right)^2,25-30x+9x^2=\left(5-3x\right)^2.\)

Suy ra \(B=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4.\) (Ở đây ta sử dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|,\) với dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)).

Mà khi \(x=\frac{1}{3}\) thì \(B=4.\) Vậy giá trị nhỏ nhất của B là 4.

 

13 tháng 7 2019

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50