K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Ta có: \(\left(x-y\right)\left(x-y\right)=\dfrac{3}{10}+\dfrac{3}{50}\)

\(\Rightarrow\left(x-y\right)^2=\dfrac{9}{25}\)

\(\Rightarrow x-y=\pm\dfrac{3}{5}\)

+) \(x-y=\dfrac{3}{5}\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x=\dfrac{3}{10}\\\dfrac{3}{5}y=\dfrac{-3}{50}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-1}{10}\end{matrix}\right.\)

+) \(x-y=\dfrac{-3}{5}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{1}{10}\end{matrix}\right.\)

Vậy cặp số \(\left(x;y\right)\)\(\left(\dfrac{1}{2};\dfrac{-1}{10}\right);\left(\dfrac{-1}{2};\dfrac{1}{10}\right)\)

5 tháng 7 2018

\(\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)

\(\Leftrightarrow\left(x-y\right)^2=\dfrac{3}{10}+\dfrac{3}{50}=\dfrac{9}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=\dfrac{3}{5}\\x-y=-\dfrac{3}{5}\end{matrix}\right.\)

thay vào tìm x và y

3 tháng 10 2019

Ta có: x(x-y)=3/10.

y(x-y)=-3/50.

=>x(x-y)-y(x-y)=3/10-(-3/50).

=>(x-y)^2=9/25=(±3/5)^2.

=>x-y=±3/5.

+)x-y=3/5.

=>x=3/10:3/5=1/2.

=>y=1/2-3/5=-1/10.

+)x-y=-3/5.

=>x=3/10:(-3/5)=-1/2.

=>y=-1/2-(-3/5)=1/10.

Vậy:x=±1/2;y=±1/10.

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)

29 tháng 12 2021

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

a: ĐKXĐ: \(x^2+y^2\ne0\)

=>\(\left[{}\begin{matrix}x^2\ne0\\y^2\ne0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

b: ĐKXĐ: \(x^2-2x+1\ne0\)

=>\(\left(x-1\right)^2\ne0\)

=>\(x-1\ne0\)

=>\(x\ne1\)

c: ĐKXĐ: \(x^2+6x+10\ne0\)

=>\(x^2+6x+9+1\ne0\)

=>\(\left(x+3\right)^2+1\ne0\)(luôn đúng)

d:ĐKXĐ: \(\left(x+3\right)^2+\left(y-2\right)^2\ne0\)

=>\(\left[{}\begin{matrix}x+3\ne0\\y-2\ne0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x\ne-3\\y\ne2\end{matrix}\right.\)

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

20 tháng 2 2021

Ta có: \(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)

\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\ge\left|2-y+y+2\right|=4\)

\(\Rightarrow\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\Rightarrow\left|x+3\right|+\left|x-1\right|\ge\dfrac{6}{\left|y-2\right|+\left|y+2\right|}\)

Dấu '=' xảy ra <=> (x+3)(1-x)\(\ge0\) và (2-y)(y+2)\(\ge0\)

Vì x,y \(\in Z\Rightarrow\left\{{}\begin{matrix}x\in\left\{-3;-2;-2;0;1\right\}\\y\in\left\{-2;-1;0;1;2\right\}\end{matrix}\right.\)