Giải phương trình:
\(\sqrt{x-\sqrt{x^2}-1}+\sqrt{x+\sqrt{x^2}-1}=2\)
giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(-1\le x\le7\)
Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)
\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)
=> \(VP\le4\)(2)
Từ (1);(2)
=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)
Vậy x=3
\(\sqrt{2023-\sqrt{x}}=2023-x\left(ĐK:x\ge0\right)\)
Đặt \(t=\sqrt{x}\left(t\le2023\right)\)
Pt trở thành : \(\sqrt{2023-t}=2023-t^2\)
\(\Leftrightarrow2023-t=\left(2023-t^2\right)^2\)
\(\Leftrightarrow t^4-4046t+4092529=2023-t\)
\(\Leftrightarrow t^4-4045+4090506=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2023\left(n\right)\\t=2022\left(n\right)\end{matrix}\right.\)
+) Với \(t=2023\Rightarrow x^2=2023\Rightarrow x=\pm17\sqrt{7}\)
+) Với \(t=2022\Rightarrow x^2=2022\Leftrightarrow x=\pm\sqrt{2022}\)
Vì \(x\ge0\) \(\Rightarrow x\in\left\{17\sqrt{7};\sqrt{2022}\right\}\)
Vậy \(S=\left\{17\sqrt{7};\sqrt{2022}\right\}\)
\(\sqrt{\dfrac{72x}{128}}=\dfrac{3}{4}\)
\(\Leftrightarrow x\cdot\dfrac{9}{16}=\dfrac{9}{16}\)
hay x=1
\(ĐKXĐ:x\in R\)
Phương trình cho tương đương :
\(\left(x^2-1\right)\left(x^2+1\right)+\left(x^2+1\right)\sqrt{x^2+1}=0\)
Đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)\Rightarrow a^2-2=x^2-1\)
Khi đó pt trở thành :
\(a^2\left(a^2-2\right)+a^3=0\)
\(\Leftrightarrow a^2\left(a^2-2+a\right)=0\)
\(\Leftrightarrow a^2\left(a+2\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge1\) )
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x^2+1=1\Rightarrow x=0\) ( Thỏa mãn )
Vậy \(S=\left\{0\right\}\)
1) \(\sqrt{x^2-x}=x\)
\(\Leftrightarrow x^2+x=x^2\)
\(\Leftrightarrow x^2+x-x^2=0\)
\(\Leftrightarrow x=0\)
Vậy: \(x=0\)
2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))
\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)
\(\Leftrightarrow1-x^2=x^2-2x+1\)
\(\Leftrightarrow-x^2-x^2-2x=1-1\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;-1\right\}\)
1: =>x^2+x=x^2 và x>=0
=>x=0
2: =>1-x^2=x^2-2x+1 và x>=1
=>x^2-2x+1-1+x^2>=0 và x>=1
=>2x^2-2x=0 và x>=1
=>x=1
ĐKXĐ: \(x\ge2\).
Với \(x\ge2\) ta có \(VP\le2;VT\ge2\).
Do đó nghiệm của pt là \(x=2\).
\(\sqrt{x-\sqrt{x^2}-1}+\sqrt{x+\sqrt{x^2}-1}=2\Leftrightarrow\sqrt{x-\left|x\right|-1}+\sqrt{x+\left|x\right|-1}=2\)
th1: \(x\ge0\)
\(\Rightarrow\sqrt{x-\left|x\right|-1}=\sqrt{x-x-1}=\sqrt{-1}\) (không tồn tại)
th2: \(x< 0\)
\(\Rightarrow\sqrt{x+\left|x\right|-1}=\sqrt{x-x-1}=\sqrt{-1}\) (không tồn tại)
vậy phương trình vô nghiệm
đề bị sai cho mik xl
\(\sqrt{x\sqrt{x^2-1}}+\sqrt{x\sqrt{x^2-1}}=2\)