Tìm x,y, biết: ( TRÌNH BÀY CÁCH TÍNH RÕ RÀNG)
8x=5y và y-2x=-10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{6}=\frac{5y}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{26}=\frac{5}{13}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{5}{13}\\\frac{y}{4}=\frac{5}{13}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{15}{13}\\y=\frac{20}{13}\end{cases}}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\) và \(2x+5y=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{2.3+5.4}=\frac{10}{26}=\frac{5}{13}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{5}{13}\Rightarrow x=\frac{5}{13}.3=\frac{15}{13}\\\frac{y}{4}=\frac{5}{13}\Rightarrow y=\frac{5}{13}.4=\frac{20}{13}\end{cases}}\)
Vậy \(x=\frac{15}{13};y=\frac{20}{13}\)
Ta có: 2xy + x = 5y
x( 2y+1) = 5y
Suy ra : 5y= 4y+y= 4y+y+2-2= 4y+2 + y-2= 2(2y+1) + (y-2) chia hết cho 2y+1
Vì 2y+1 chia hết cho 2y+1 nên 2(2y+1) chia hết cho 2y+1
Do đó y-2 chia hết cho 2y+1
Nên 2(y-2)= 2y-4= 2y+1-5 chia hết cho 2y+1
Vì 2y+1 chia hết cho 2y +1 nên 5 chia hết cho 2y+1
Sau đó bạn lập bảng tìm x,y nhé!
ta có: 8x+2x+x
x.(8+2+1)=20
x.11=20
x=20:11
x=20/11
kết quả là phân só đấy bạn
\(\frac{y}{12}=\frac{x}{4}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}.\)
Từ đó tính được x và y => Z
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x}{4}=\frac{y}{12}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}\frac{x}{4}=\frac{1}{2}\\\frac{y}{12}=\frac{1}{2}\\\frac{z}{15}=\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=7,5\end{cases}}\)
Vậy .........
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
<=> \(\frac{30}{6x}-\frac{2xy}{6x}=\frac{x}{6x}\)
<=> 30-2xy=x
<=>x+2xy=-30
<=>x(2y+1)=-30
Vì x,y thuộc Z
=> x,2y+1 thuộc Z
=> x, 2y+1 thuộc Ư(-30)={1;-1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}
Xét bảng ( tự xét nha)
KL: ...........
Ta có: x - y = 4 => x = 4 + y
Thay x = 4 + y vào \(\frac{x-3}{y-2}=\frac{3}{2}\) , ta đc:
\(\frac{4+y-3}{y-2}=\frac{3}{2}\Rightarrow\frac{y+1}{y-2}=\frac{3}{2}\Rightarrow2\left(y+1\right)=3\left(y-2\right)\Rightarrow2y+2=3y-6\Rightarrow y=8\)
=> x = 4 + y = 4 + 8 = 12
Vậy x = 12 , y = 8
Áp dụng công thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\) ta được:
\(\frac{x+2}{x+6}=\frac{3}{x+1}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=3\left(x+6\right)\)
\(\Leftrightarrow x^2+3x+2=3x+18\)
\(\Leftrightarrow x^2=16\)
Vậy \(x\in\left\{4;-4\right\}\)
(x+2)/(x+6)=3/(x+1)
<=> (x+2)(x+1)/(x+6)(x+1)=3(x+6)/(x+6)(x+1)
=>(x+2)(x+1)=3(x+6)
<=> x^2+x+2x+2=3x+18
<=> x^2=16
<=>x^2=4^2 hoặc (-4)^2
<=> x=4 hoặc x=-4
Vậy.........
\(\frac{x-3}{7-5x}=\frac{1}{x-2}\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=7-5x\)
\(\Rightarrow x^2-2x-3x+6=7-5x\)
\(\Rightarrow x^2-2x-3x+5x=7-6\)
\(\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
k nhé,Vy Nguyễn Đặng Khánh !
nhân tích chéo
\(\frac{x-3}{7-5x}=\frac{1}{x-2}\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=1\left(7-5x\right)\)
\(\Leftrightarrow x^2-3x-2x+6=7-5x\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=1\)
vậy x=1
Ta có: 8x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{8}=\dfrac{y-2x}{8-10}=\dfrac{-10}{-2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{8}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.8=40\end{matrix}\right.\)
Vậy x = 25; y = 40.
Ta có: \(8x=5y\Rightarrow\dfrac{y}{8}=\dfrac{x}{5}\Rightarrow\dfrac{y}{8}=\dfrac{2x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{y}{8}=\dfrac{2x}{10}=\dfrac{y-2x}{8-10}=\dfrac{-10}{2}=-5\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{y}{8}=-5\Rightarrow y=-40\\\dfrac{2x}{10}=-5\Rightarrow2x=-50\Rightarrow x=-25\end{matrix}\right.\)