Tìm giá trị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

a) Tìm được x ≠ -6 và x ≠ 0.
b) Gợi ý: x 3 + 4 x 2 - 6x + 36 = (x + 6) ( x 2 - 2x + 6)
Tìm được P = x 2 − 2 x + 6 2 x
c) Ta có P = 3 2 ⇔ x 2 − 5 x + 6 = 0 . Từ đó tìm được x = 2 hoặc x = 3 (TMĐK).
d) Tương tự câu c, tìm được x = -6 (KTM) hoặc x = -1 (TM)
e) P = 1 Þ x 2 ‑ - 4x + 6= 0 Û ( x - 2 ) 2 + 2 = 0 (vô nghiệm)
Vì ( x - 2 ) 2 + 2 ≥ 2 > 0 với mọi x. Do vậy x ∈ ∅ .

Vì |x-2| \(\ge\) 0 với mọi x
=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x
=>MaxA=1/2
Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)
Vậy..............

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)
a) Phân số có mẫu là một số dương. Vậy để PS dương đó đạt giá trị nhỏ nhất thì tử phải thỏa mãn điều kiện là số tự nhiên nhỏ nhất khác 0 và phải thỏa mãn a thuộc N.
b) Phân số có tử là một số dương. Vậy để PS dương đó đạt giá trị lớn nhất thì mẫu phải thỏa mãn điều kiện là số tự nhiên nhỏ nhất khác 0 và phải thỏa mãn a thuộc N.