K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=2x^2-2x^2-x-5+\left|7x-1\right|\)

=|7x-1|-x-5

Trường hợp 1: x>=1/7

A=7x-1-x-5=6x-6

Trường hợp 2: x<1/7

A=1-7x-x-5=-8x-4

b: Để A=2 thì |7x-1|-x-5=2

=>|7x-1|=x+7

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-7\\\left(7x-1\right)^2-\left(x+7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-7\\\left(7x-1-x-7\right)\left(7x-1+x+7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-7\\\left(6x-8\right)\left(8x+6\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{4}{3};-\dfrac{3}{4}\right\}\)

2 tháng 5 2023

a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)

\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)

\(P\left(x\right)=-2x^3-11x^2+7x+5\)

b) Thay x=1 vào đa thức P(x) ta được:

\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)

4 tháng 3 2022

a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)

b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)

c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)

4 tháng 3 2022

a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)

\(=8x^5-3x^5-6x^2+2x^2+7x+1\)

\(=5x^5-4x^2+7x+1\)

\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)

\(=4x^5+x^5-2x^2-2x^2+3x+8\)

\(=5x^5-4x^2+3x+8\)

b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)

+  \(Q\left(x\right)=5x^5-4x^2+3x+8\)

____________________________

\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)

c/ \(P\left(x\right)=Q\left(x\right)\)

\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)

\(\Rightarrow7x+1=3x+8\)

\(\Rightarrow4x-7=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

5 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức : \(3\)

Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)

b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)

\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)

3 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)

a) P(x) = 5x5 - 4x2 + 7x + 15

Q(x) = 5x5 - 4x2 + 3x + 8

b) Có: P(x) - Q(x) = 4x + 7

P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)

8 tháng 3 2023

`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`

`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`

`=5x^5 -4x^2 +7x+15`

`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`

`=(4x^5+x^5) +(-2x^2  -2x^2)+3x+8`

`= 5x^5 - 4x^2 +3x+8`

`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`

`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`

`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`

`= 0 + 0 +4x + 7`

`=4x+7`

16 tháng 8 2021

casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c

casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c

16 tháng 8 2021

có cả cách này à =)))

menu setup -> 9 -> 2 - > 2 (pt cần phân tích)  -> nhập hệ số của pt vào từng biến thích hợp -> ''='' 

VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)

vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)

Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)

tương tự nhé 

– Thu gọn và sắp xếp được:

P(x) =  5x5 – 4x2 + 7x + 15

Q(x) =  5x5 – 4x2 + 3x  + 8

 

0,5 đ

0,5 đ

b– Tính được:

P(x) – Q(x) = (5x5 – 4x2 + 7x + 15) – (5x5 – 4x2 + 3x  + 8)

= (5x5 – 5x5) + (- 4x2 + 4x2) + (7x – 3x) + (15 – 8)

=  4x + 7

– Cho P(x) – Q(x) = 0 khi 4x + 7 = 0

4x    = -7

x    = -7/4

Vậy nghiệm của đa thức P(x) – Q(x) là x = -7/4

k cho mk nha

16 tháng 4 2021

j vậy

vừa hỏi vừa trả lời là sao