Giải PT:
\(\sqrt{x^2+32}-2\sqrt[4]{x^2+32}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng 2 phương trình lại
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)
điều kiện: 0=<x =< 32
hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)
theo bất đẳng thức Bunhiacopsky ta có:
\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)
\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)
\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)
mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
đẳng thức xảy ra khi x=16 và y=3 (tm)
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow8-x^2=2\sqrt{2+\sqrt{3}}+2\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow x^4-16x^2+64=4\left(2+\sqrt{3}+6-3\sqrt{3}+2\sqrt{3}\right)\)
\(\Leftrightarrow x^4-16x^2+64=32\)
\(\Leftrightarrow x^4-16x^2+32=0\)
Vậy có điều phải chứng minh.
Đặt \(t=\sqrt[4]{x^2+32}\ge0\)
\(\Rightarrow\sqrt{x^2+32}=t^2\)
pt trên đc viết lại thành
\(t^2-2t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-1\end{matrix}\right.\)
Vì \(t\ge0\) nên t=3
\(\Rightarrow\sqrt[4]{x^2+32}=3\)
\(\Leftrightarrow x^2+32=3^4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Thử lại thỏa mãn