Phân tích thành nhân tử dùng phương pháp hằng đẳng thức;
a)\(\frac{1}{4}\left(a+b\right)^2-1\)
b) \(9\left(x-y\right)^2-4\left(x-y\right)^2\)
c) \(\left(p-2q\right)^2-4\left(p+q\right)^2\)
d) \(25p^2m^4-\frac{1}{36}p^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
\(=\left(4-a-b\right)\left(4+a-b\right)\), đằng trước là dấu trừ thì khi bỏ ngoặc phải đổi dấu chứ nhỉ :0
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
8x3- 125= (2x)3- 53= (2x-5)[(2x)2+2x5+52 ]=(2x-5)(4x2+10x+25)
\(2x^2-7x+3\)
\(=2\left(x^2-\frac{7}{2}x+\frac{3}{2}\right)\)
Vậy thôi đâu cần dùng HĐT
x^8+x^4+1=x^8-x^2+x^4-x+x^2+x+1=x^2(x^6-1)+x(x^3-1)+x^2+x+1=x^2(x^3-1)(x^3+1)+x(x^3-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)[x^2(x^3+1)(x-1)+x(x-1)+1)]
a,\(\frac{1}{4}\left(a+b\right)^2-1=\left(\frac{a+b}{2}\right)^2-1^2=\left(\frac{a+b}{2}-1\right)\left(\frac{a+b}{2}+1\right)\)
b,\(9\left(x-y\right)^2-4\left(x-y\right)^2=\left(x-y\right)^2\left(9-4\right)=5\left(x-y\right)^2\)
c,\(\left(p-2q\right)^2-4\left(p+q\right)^2=\left(p-2q-2p-2q\right)\left(p-2q+2p+2q\right)\)
\(=\left(-p-4q\right)3p\)
d, \(25p^2m^4-\frac{1}{36}p^4=\left(5pm^2\right)^2-\left(\frac{p^2}{6}\right)^2=\left(5pm-\frac{p^2}{6}\right)\left(5pm+\frac{p^2}{6}\right)\)
a, \(\frac{1}{4}\left(a+b\right)^2-1=\left(\frac{1}{2}a+\frac{1}{2}b\right)^2-1=\left(\frac{a}{2}+\frac{b}{2}-1\right)\left(\frac{a}{2}+\frac{b}{2}+1\right)\)
b, \(9\left(x-y\right)^2-4\left(x-y\right)^2=\left(3x-3y\right)^2-\left(2x-2y\right)^2\)
\(=\left(3x-3y-2x+2y\right)\left(3x-3y+2x-2y\right)=5\left(x-y\right)^2\)
c, \(\left(p-2q\right)^2-4\left(p+q\right)^2=\left(p-2q\right)^2-\left(2p+2q\right)^2\)
\(=\left(p-2q-2p-2q\right)\left(p-2q+2p+2q\right)^2=9p^2\left(-p-4q\right)\)
d, \(25p^2m^4-\frac{1}{36}p^4=\left(5pm^2\right)^2-\left(\frac{1}{6}p^2\right)^2=\left(5pm^2-\frac{1}{6}p^2\right)\left(5pm^2+\frac{1}{6}p^2\right)\)
\(=p^2\left(5m^2-\frac{1}{6}p\right)\left(5m^2+\frac{1}{6}p\right)\)